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ABSTRACT 
Efficient geovisualization is beneficial for understanding geospatial 
phenomena, an important research direction for GISers and 
Cartographers. However, the current research on geovisualization 
overemphasizes the visual effects while neglecting the prominent 
representation of crucial information and failing to consider the 
user’s cognitive workload of information processing. Following the 
laws of visual perception of the human eyes, this article proposes a 
visual attention-guided augmented representation approach of 
geographic scenes that involves area of interest computation, back-
ground simplification, and compound graphic variables. Finally, we 
select bridge stress visualization as a case study for experimental 
analysis. The experimental results of eye-tracking show that aug-
mented representation could draw the participants’ attention to 
areas of interest in a short time, increasing their duration of fixa-
tions and the accuracy of completing given tasks. These findings 
suggest that our approach can enhance geographic scenes’ cogni-
tive efficiency, offers a new idea for the theoretical studies of geovi-
sualization, and holds promising potential for broader application 
in various geographical phenomena visualization.
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1. Introduction

In the context of the rapid development of digital twins, there is an increasing 
emphasis on cross-departmental collaboration (Broo et al. 2022; Ma et al. 2022; Wu 
et al. 2023), in which advanced visualization of geographic scenes can facilitate com-
munication among stakeholders (Kim et al. 2013; Boton 2018; Ma et al. 2021). Taking 
digital construction as an example, bridge stress simulation plays an essential role in 
structure safety assessment and risk prevention (Li et al. 2015; Zhou and Zhang 2019). 
However, the existing representation of stress in finite element analysis (e.g., ANSYS, 
Midas Civil) leads to tenuous communication among stakeholders (e.g., decision- 
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makers, bridge engineers, GISers) involved in construction due to excess engineering 
details and a lack of integrated geovisualization.

Geovisualization generally refers to the visual representation of geoinformation to 
facilitate thinking, understanding, and knowledge discovery about the geographic 
environment (MacEachren 2004; Laurini 2017; Li et al. 2020; Degbelo 2022; Zuo et al. 
2022). In an era dominated by digital earth, it is still a delicate task to design appropri-
ate visualization that empowers users to perform efficient visual processing of geo-
graphic information (Reichenbacher and Swienty 2007; Goodchild et al. 2012; Ç€oltekin 
et al. 2018; Li et al. 2019, 2023; Zhu et al. 2023).

Scientific visualization plays a pivotal role in enhancing the effectiveness and 
readability of geoinformation (Bodum 2005; Li et al. 2019, 2022; Zhu et al. 2024). A crit-
ical objective of geovisualization is much more to allow users to quickly locate and eas-
ily decode relevant information in geographic scenes, which is not just a simple 
rendering task, usability and cognition should also be focused (Swienty et al. 2006; Li 
et al. 2021). However, whether the current research on map-based geovisualization, 3D 
geovisualization, or immersive geovisualization, they all overemphasize the visual 
effects while neglecting the prominent representation of crucial information and fail to 
consider the user’s cognitive workload of information processing (MacEachren et al. 
2004; Dransch et al. 2010; Dong et al. 2020; Zhang et al. 2020; Badwi et al. 2022). 
Ç€oltekin et al. (2019) stated that geovisualization should focus on user-centric thinking 
both from a theoretical and a practical perspective, and that a critical challenge needs 
to be addressed is how to improve the understanding of human perceptual and cogni-
tive processes and developing effective solutions (Andrienko et al. 2010). For the task 
at hand, we expect to propose a novel representation method of geographic scenes 
that takes into account the user’s cognition. In our case, we also want to fill the miss-
ing link between the bridge stress simulation and geovisualization to promote the 
stakeholders’ communication.

Human visual scanning of a specific scene is distinguished by two fundamental 
actions (Reicher et al. 1976; Treisman 1982; Torralba et al. 2006): attention shifting (i.e. 
saccade) and visual information processing (i.e. fixation). In this process, the eyes will 
prioritize searching for the area of interest (AOI) and ignore other areas that do not 
attract visual attention (Jahnke et al. 2008; Fu et al. 2021), which provides a new per-
spective for studying visual attention-guided geovisualization. From the standpoint of 
people’s cognition, it is essential that the background should not dominate the geovi-
sualization, as it could distract the users’ fixations from relevant information. To guide 
the user’s attention to the focal information, the virtual scene’s background should be 
represented as non-salient. In contrast, the relevant information should be processed 
in a local mode and augmented by a salient visual stimulus.

Following this idea, this article presents a novel approach that utilizes visual atten-
tion guidance to enhance the representation of geographic scenes, explicitly focusing 
on bridge stress visualization as a case study for experimental analysis. The primary 
objective is to gradually guide the user’s attention through background simplification, 
stress focusing, and visual augmentation, thereby improving their comprehension and 
perception of the bridge stress scene. Finally, a cognitive evaluation program for 
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augmented representation using eye tracking is designed to verify the effectiveness of 
the proposed approach.

The remainder of this article is structured as follows: Section 2 briefly describes the 
related terms in this article, whereas Section 3 gives insights into the introduced 
approach. Subsequently, Section 4 introduces the implementation of the prototype 
system and experiment results. Section 5 presents the discussion. Section 6 finally 
summarizes the article and gives an outlook for future research.

2. Definition of relevant terms

To improve the reader’s comprehension of this article, we have defined and explained 
the following relevant terms.

1. Visual attention. Visual attention is a cognitive mechanism in the human visual 
system for selecting and focusing on a specific target in the observed scene. In 
geovisualization, users are required to locate promptly and decode the geoinfor-
mation easily to gain visual awareness, which is closely related to visual attention 
and controlled by the amount of information and stimulus drive (Wolfe and 
Horowitz 2004; Reichenbacher and Swienty 2007; Robinson 2011).

2. Area of interest. AOI refers to a selected sub-region that might interest the user 
in the displayed stimuli, which provide valuable visual information for completing 
cognitive tasks (Holland and Lee 2019). In this article, the area where the overlap-
ping area of both eyes is considered the potential AOI.

3. Augmented representation. Augmented representation differs from augmented 
reality (Moore et al. 2020; Zhang et al. 2020). The concept of augmented represen-
tation is expanded in this article upon Li et al. (2021), which define it as the util-
ization of a virtual geographical scene as the primary carrier, incorporating visual 
attention to achieve the quick localization of the AOI and reduce the interference 
of irrelevant background information, and additionally using compound graphic 
variables to enhance visual information saliency, facilitating participants to decode 
and master critical details quickly.

4. Bridge stress. Bridge stress refers to the distribution of internal forces, which 
describes the magnitude and direction of internal force at a specific location and 
along a certain cross-section within the bridge.

3. Methodology

Section 3.1 describes the algorithm corresponding to the AOI computation and back-
ground simplification. Section 3.2 presents multi-level spatial modeling of bridge 
stress. Section 3.3 introduces compound graphic variables for the augmentation of vis-
ual attention. Section 3.4 designs cognitive evaluation for augmented representation 
using eye tracking.
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3.1. Overlapping vision area computation and background simplification

3.1.1. Overlapping vision area computation considering eye field of view
The observation area of the human eye has a specific range called the field of view 
(FOV), and the ability to discriminate information is most robust in the overlapping 
area of both eyes within the FOV, which is considered as AOI in this article. In this 
context, we present a computational method for determining the AOI considering the 
user’s eye FOV. The primary objective is precisely drawing the user’s attention within 
the AOI. Figure 1 illustrates the fundamental idea behind our method.

We assume that the center point of the eyes is in a horizontal plane with the center 
point of the monitor, and the distance is denoted as Ds, the pupil distance between 
the left and right eye as PD, and the screen width and height as Sw and Sh, respect-
ively. The width and height of the sight view are represented as w and h. The width 
and height of the overlapping vision area are denoted as Ow and Oh. The horizontal 
and vertical angles of the FOV are represented as a and b, respectively.

Consequently, the sight view width w can be calculated using Equation 1:

w ¼ 2Ds � tan
a

2
(1) 

Similarly, the sight view height h can be calculated using Equation 2:

h ¼ 2Ds � tan
b

2
(2) 

According to the size of the sight view and the pupil distance PD, the overlapping 
vision area can be calculated using Equation 3:

Figure 1. Schematic diagram of the AOI based on the human eye FOV.
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Ow ¼ w − PD
Oh ¼ h

�

(3) 

Thus, the AOI is the rectangular area with Ow as the width and Oh as the height. 
The proportion of the AOI to the screen can be calculated based on the screen size Sw 

and Sh.

3.1.2. Background simplification based on Gaussian blur algorithm
There are many image blur algorithms, such as Gaussian, Kawase, Dual, etc. However, 
Gaussian blur simulates the optical effect of defocusing and has high computational effi-
ciency, which enables the creation of a smooth and natural appearance of blurred areas 
similar to that observed by human eyes in a short time (Zhang and Ma 2019). In this con-
text, we employ the Gaussian blur algorithm to minimize the influence of the background 
information by simplifying the details outside the AOI and keeping relevant information 
as much as possible in the visual foreground. The algorithm is described as follows:

Gði, jÞ ¼
1

2pr2
e−ði2 þ j2Þ=2r2

(4) 

Gði, jÞ denotes the weight matrix of the Gaussian convolution kernel, (i, j) indicates the 
kernel position, and r is the standard deviation of the Gaussian distribution.

Zði, jÞ ¼
Gði, jÞ

Pu¼n
u¼−n

Pv¼n
v¼−nGði þ u, j þ nÞ

(5) 

Figure 2. An example of Gaussian blur calculation.
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Zði, jÞ represents the normalized weight matrix, and n denotes the convolution kernel 
radius. If n¼ 1, the convolution kernel is of size 3 � 3:

GBðx, yÞ ¼ Pðx, yÞ � Zði, jÞ (6) 

GBðx, yÞ denotes the updated pixel values, and the Pðx, yÞ indicates the original pixel 
values. Figure 2 shows a Gaussian blur calculation with r¼ 1.5 and n¼ 1.

3.2. 3D Representation of bridge stress in the AOI

The bridge stress results are spatially modeled from the whole to a local level to help 
stakeholders’ step-by-step understanding of the stress distribution while also improv-
ing the bridge scene’s rendering efficiency. The main idea is shown in Figure 3.

3.2.1. Line stress representation
In line stress representation, we simplify the bridge to a rod-like structure comprising 
multiple units that store essential data, including node positions and stress values. The 
node ID serves as a crucial identifier for retrieving information regarding the node’s 
position, stress values, and topologic relationships, and they are connected to repre-
sent the stress distribution of the whole bridge in 3D space, as shown in the upper 
right of Figure 3.

3.2.2. Surface stress representation
To accurately reflect the stress conditions of various bridge components, we propose 
an automatic modeling method of surface stress based on cross-section lofting, draw-
ing inspiration from parametric modeling (Zhu et al. 2015). Figure 4 shows the auto-
matic modeling process of surface stress, and we aim to generate surface stress based 
on line stress automatically.

Figure 3. The spatial modeling and representation of stress simulation results. The left shows the 
position and stress of the sampling points, and the right shows three different stress modeling 
approaches from the line, the surface, to the solid. In addition, the different levels of the stress 
model will be dynamically scheduled according to the viewpoint.
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Assuming there is line stress segment P1P2 (Figure 4(a)), which can be transformed 
to P10P20 (Figure 4(b)) in a 3D space. Then, we can calculate the vertices of each node 
based on the cross-section information, and the example of section type in Figure 4(c)
is a quadrilateral.

Subsequently, the combined transformation shown in Figure 4(d) is used to restore 
the surface stress from P10P20 to its initial orientation P10newP20, where the transform-
ation process involves Dx ¼ x2 − x1, Dy ¼ y2 − y1, and Dz ¼ z2 − z1: The specific proced-
ure is as follows:

� Rotate P10P20 around the y-axis by b to obtain P10tempP20, i.e. sweep through the 
green sector in Figure 4(d).

b ¼ arcsin
Dz
dist

(7) 

Rotate P10tempP20 around the z-axis by c to obtain P10newP20, i.e. sweep through the 
purple sector in Figure 4(d).

Figure 4. The automatic modeling process of surface stress based on cross-section lofting.
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c ¼ arctan
Dy
Dx

(8) 

For the particular case where Dx, Dy, and Dz are 0, the rotation angles are as shown 
in Table 1.

Translating P10newP20 back to its initial position (Figure 4(e)). A closed surface is 
formed based on the topological relationship between vertices, creating a 3D stress 
model for the bridge surface.

3.2.3. Solid stress representation
Simplifying the bridges into a rod-like structure for stress analysis is insufficient to han-
dle irregular bridge components and accurately analyze the local details of the bridge. 
This study also considered four types of solid elements: tetrahedron, hexahedron, 
wedge, and pyramid. The vertices of these solid elements are stored according to the 

Table 1. The rotation angles for particular cases.
Number a b c

1 0 0 0
2 0 0 90
3 0 0 arctan Dy

Dx

� �

4 0 0 0
5 0 90 0
6 0 arcsin Dz

dist

� �
90

7 0 arcsin Dz
dist

� �
0

Figure 5. Solid stress modeling of bridges.
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data structure shown on the right side of Figure 5. Subsequently, triangular facets are 
generated based on vertex indices and stress values.

3.3. Compound graphic variables for the augmentation of visual attention

In visual brain areas, the posterior parietal cortex (PPC) and inferior parietal cortex 
(ITC) located on the ’where’ and ’what’ pathways are responsible for the location and 
semantic decoding of relevant information for decision-making (Ungerleider 1995; 
Swienty et al. 2006). Likewise, geovisualization is about bottom-up visual stimulation 
and sends signals to visual brain areas to tell the user when, where, and what is 
happening.

Visual variables influence visual attention and cognitive process by controlling 
changes in stimulus material, which include time, space, and attribute in dimensions. 
However, basic visual variables have low-level visual characteristics (Li et al. 2020), 
while multidimensional associations and combinations among these underlying 
variables enable the creation of more complex compound graphic variables 
(Chen et al. 2021), enhancing the graphical encoding of geoinformation. The basic 

Figure 6. Visual variable dimensions and compound graphic variables for the augmentation of 
visual attention. The conceptual framework of compound graphic variables was inspired by Li et al. 
(2020) and Chen et al. (2021).
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principle is shown in Equation 9:

FðeÞ ¼ fTðe, tiÞ, Sðe, siÞ, Aðe, aiÞg�ªI (9) 

Where F denotes the compound graphic variables; T refers to visual variables 
with the ability to describe temporal characteristics; S represents the spatial semantic 
characteristics of the visual elements; A reflects the change in the appearance of 
the visual elements; I indicates the interplay and combination of diverse visual 
variables.

Specifically, the idea for the compound graphic variables to enhance visual atten-
tion is shown in Figure 6. The association of basic visual variables in time, space, and 
attribute dimensions forms compound graphic variables, which stimulate the user’s 
attention, help them focus on more details and ultimately decode the geoinformation 
into knowledge. For example, duration, shape, and orientation can be combined to 
form a new compound graphic variable names’ motion’, which provokes high neural 
responses and is detected faster than static attributes.

3.4. Cognitive evaluation for augmented representation using eye-tracking

Attention can shift without eye movements, but users cannot move their eyes without 
a concomitant shift of attention (Swienty 2008). In this context, we opt for eye-track-
ing to evaluate the cognitive efficiency of the augmented representation.

Figure 7 depicts a workflow comprising three primary components: experiment 
preparation, procedure design, and result analysis. In the experiment preparation 
phase, essential tasks involve determining the purpose of the eye tracking study, 
selecting the appropriate software environment (e.g. Unity3D), and hardware equip-
ment (e.g. Tobii Pro Nano). Additionally, participant selection and preparation of com-
parative materials for the study are essential aspects. Subsequently, the procedure for 
the eye tracking experiment is designed, wherein participants are invited to observe 
the test materials and respond to predetermined questions while data is continuously 
recorded. Finally, relevant effectiveness and efficiency indices are chosen to qualita-
tively and quantitatively evaluate the experiment results.

Figure 7. Experiment design of eye tracking for augmented representation.
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4. Experiment analysis

4.1. Study area and data processing

In this article, a mega suspension bridge under construction located in Luding 
(29�55’32’N �29�56’03’N, 102�13’18’E �102�14’07’E) was selected as the case for 
experiment analysis. The stress analysis was performed in Midas Civil under the super-
vision of bridge specialists. The finite element model for the whole bridge contains 
12,970 nodes and 12,436 cells, with a more refined tower section featuring 10,834 
nodes and 97,331 cells.

We restructured the stress simulation results according to node type, position, topo-
logic relationships, cell type, and stress value. A more lightweight GeoJSON format 
was used for data storage and exchange. Additionally, the Drone acquired the remote 
sensing images and digital elevation model (DEM) required for geographic scene 
construction and were further processed into tiles.

4.2. Prototype system implementation

Using WebGL technique, we successfully developed a prototype system with B/S archi-
tecture. This system enabled us to perform visual attention-guided augmented repre-
sentation of bridge stress in virtual geospatial space, as shown in Figure 8. The server 
side was built with NodeJS v16.18.0, and the interface was designed using HTML5, 
CSS, and JavaScript within the Vue framework. An open-source library Cesium.js v1.73 
was used to construct the 3D virtual scene and visualize the stress information.

Figure 8. The interface of the prototype system. The prototype system comprises Function Menu, 
Stress LOD, Layer management, and 3D representation. The Function Menu expertly governs the 
system, overseeing tasks like frame rate monitoring, gauss blur, and geo-analysis. The parameters 
of the vision and the screen size can also be set in the Function Menu. The Stress LOD module is 
responsible for loading stress data, while the Layer Management controls the visibility and renders 
the order of layers. 3D representation zone visualizes the bridge stress and the corresponding 
geoinformation.
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The prototype system was tested on Google Chrome 96.0.4664.110 and ran on 
Lenovo Legion R9000P2021H. The processor was an AMD Ryzen 7 5800H with Radeon 
Graphics, 16 GB memory, and NVIDIA GeForce RTX 3060 Laptop GPU 6 GB. In addition, 
Tobii Pro Nano was employed to carry out the subsequent eye tracking experiment.

4.3. Augmented representation of bridge stress

4.3.1. Background simplification and bridge semantic division
As shown in Figure 9, the previously mentioned AOI computation and Gaussian blur 
algorithm have been applied to simplify the background information outside the AOI 

Figure 9. Background simplification and bridge semantic division.

Figure 10. Spatial modeling and representation of bridge stress.
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to reduce the distraction of non-relevant information. It can be seen that the bridges 
and the corresponding geoinformation in the AOI were rendered with high fidelity, 
which allowed users to focus on the AOI and effectively perceive the bridge informa-
tion. In addition, we divided the bridge structure from a semantic perspective and pro-
vided the corresponding annotations, which served to facilitate the users’ 
understanding of the stress distribution of each bridge component subsequently. 
Bridge semantic division will also be used as part of the material for subsequent cog-
nitive experiments on augmented representation.

4.3.2. Augmented representation of bridge stress in the 3D scene
Figure 10 presents the outcomes of spatial modeling and representation of bridge 
stress, effectively visualizing stress at all levels and seamlessly coupling it to the 3D 
geographic scene. The LOD modeling of stress can meet the requirements of bridge 
construction at different stages but also the rendering efficiency of the virtual scene.

People tend to rely on perceptual salience to extract information, and vivid repre-
sentation may attract their attention, thus guiding them to focus on the AOI and 
improving memorability. To visualize bridge stress, we performed multiple convolu-
tions on the pixels outside the AOI using the Gaussian blurring algorithm, thus simpli-
fying the background details.

Regarding the augmented representation of bridge stress, we divided the stress 
intervals and determined the mapping between stress and color values according to 
the gradient variation. In addition, compound graphic variables are used to guide 

Figure 11. Augmented representation of bridge stress based on compound graphic variables.
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visual attention, as shown in Figure 11. For example, the compound variable ’motion’ 
holds significant potential in directing attention since it can trigger the high respon-
siveness of visual brain areas. Consequently, by combining the variables of orientation 
and order, motion can be generated to effectively guide individuals’ attention toward 
the center of the virtual scene. Similarly, combining color and time variables can form 
a flicker, emphasizing stress areas that require focused attention, thus enhancing the 
participant’s perception of the area and swiftly drawing their gaze into sharp focus.

4.4. Cognitive analysis of augmented representation

In this section, we analyzed the cognitive efficiency of the augmented representation 
of bridge stress based on eye-tracking experiments following the process shown in 
Figure 7.

4.4.1. Experiment preparation
(1) Experiment purpose. In the context of bridge stress visualization, this study aims to 
compare the difference in cognition between traditional geovisualization and visual 
attention-guided augmented representation.

(2) Test environment and hardware. The test environment employed for the study 
was the bridge stress scene in 3D, running on the Lenovo Legion R9000P2021H. The 
eye-tracking device was a Tobii Pro Nano with a sampling frequency of 60 Hz. 
The Tobii Pro Eye Tracker Manager and Tobii Pro Lab were used to record and analyze 
the observation data. In our experiment setup, we took care that all users had the 
same environment, e.g. the same screen, table, Ds, etc.

(3) Participants. We recruited 30 participants (aged between 21 and 28 years old, 18 
males and 12 females) to participate in this study who were GIS or bridge engineering 
students. They were randomly assigned to groups A (14 participants) and B (16 partici-
pants). The participants have a naked or corrected vision of 1.0 or higher, with no 
color vision deficiency. All participants had 2D map-reading experience, and they 
could use computers proficiently, but none had prior knowledge of this experiment’s 
content. For the sake of comparability and simplicity, we assumed a default value of 
PD (60 mm) for the participants.

Figure 12. The comparative materials of cognition experiment.
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(4) Material. The test material for the eye-tracking experiment is shown in Figure 12. 
In Figure 12(a), the 3D representation of bridge stress is depicted as scene A, which 
does not consider the human eye’s visual characteristics (Dransch et al. 2010; Zhang 
et al. 2020; Li et al. 2021). In Figure 12(b), scene B incorporates background blurring, 
high-stress flicker, and semantic annotation of stress information on the basis of 
scene A.

4.4.2. Procedure design
(1) Test procedure. The participants in groups A and B were asked to observe scenes 
A and B, respectively, follow the on-screen prompts, and complete the given 
questions.

� Among the above four parts, which part has the highest tensile stress?
� Among the above four parts, which part has the highest compressive stress?
� Among the above four parts, which part has the lowest stress?
� In Part IV, which bridge component is subjected to the highest tensile stress?
� In Part IV, which bridge component is subjected to the highest compressive stress?

The above process automatically recorded the eye movement data and response 
for further analysis.

(2) Analysis indices. The analysis of the eye-tracking data generally includes effective-
ness and efficiency. According to Dong et al. (2018), the effectiveness indices include 
the percentage of fixations in AOIs and the accuracy for the given tasks, while the effi-
ciency indices include the time to first fixation in AOI, the finish time for the given 
tasks, and the pupil diameter. Table 2 lists the indices and their descriptions.

4.4.3. Result analysis
(1) Qualitative analysis. Figures 13(a) and 13(b) show the eye-tracking heat map of 
scene A and scene B, respectively. The darker red areas in the heat map indicate the 
parts that receive more attention. Compared with scene A, it can be seen that scene 
B’s heat map has darker red in the high-stress flicker and the semantic annotation 
part of the stress information, indicating that these two areas can effectively attract 
users’ visual attention and enhance concentration.

Table 2. Analysis indices.
Category Indices Descriptions

Effectiveness Percentage of fixations in AOIs(PAOIs) Duration of fixations located within AOIs 
divided by all reading time

Accuracy Number of given questions answered 
correctly

Efficiency Time to the first fixation in AOI(TAOIs) Duration from the beginning of the task to 
the first fixation located within the AOIs

Finish time The average time used to complete given 
questions

Pupil diameter The average pupil size of participants during 
the experiment

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 15



In addition, we depicted the gaze point sequences of all participants, as shown in 
Figure 14(a) and 14(b). The circles in the figures indicate the participants’ gaze points, 
the numbers indicate the gaze order, and the larger size represents the longer the 

Figure 13. The heat map of eye-tracking in the bridge stress scene.

Figure 14. The gaze point sequences of all participants in the bridge stress scene.

Table 3. Shapiro-Wilk for normal distribution testa.

Indices Groups

Shapiro-Wilk test

sta df p

PAOIs Group A 0.912 14 0.169
Group B 0.946 16 0.434

TAOIs Group A 0.814 14 0.008��

Group B 0.776 16 0.001��

Finish time Group A 0.912 14 0.167
Group B 0.912 16 0.125

Accuracy Group A 0.849 14 0.021�

Group B 0.787 16 0.002��

Pupil diameter Group A 0.662 14 0.000��

Group B 0.872 16 0.029�
asta¼ statistic, df¼ degree of freedom. P stands for the statistical p-value. �p< 0.05, ��p< 0.01.

Table 4. Statistical test of the experiment resultsb.
Descriptive Inferential

Group A Group B
T-test U-test

Evaluation indices M ± SD M ± SD t df p u z p

PAOIs 0.41 ± 0.12 0.55 ± 0.12 −3.298 28 0.003�� n/a n/a n/a
TAOIs 1.34 ± 1.23 0.65 ± 0.81 n/a n/a n/a 59 −2.203 0.028�

Finish time 21.13 ± 5.99 14.42 ± 5.72 3.136 28 0.004�� n/a n/a n/a
Accuracy 0.63 ± 0.21 0.84 ± 0.17 n/a n/a n/a 49 −2.619 0.010��

Pupil diameter 3.13 ± 0.57 2.82 ± 0.34 n/a n/a n/a 61 −2.210 0.034�
bM¼mean, SD¼ standard deviation, and �p< 0.05, ��p< 0.01.
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gaze duration. The gaze points are scattered in scene A, and many are gathered in 
the background area, e.g. the river. In contrast, the gaze points in scene B are mainly 
distributed in the area surrounding the bridge stress. This suggests that the blurring 
of background information helps to reduce the interference of non-relevant informa-
tion, allowing the participants to focus more on the bridge stress information in AOI.

Figure 15. Statistical analysis of the two test groups.
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(2) Quantitative analysis. After receiving eye-tracking feedback from participants, we 
conducted a Shapiro-Wilk test to assess the normal distribution of the results, as pre-
sented in Table 3. The statistical results show that the p-values of PAOIs and finish 
time are greater than 0.05, indicating that the results corresponding to the two indices 
fit the normal distribution. Conversely, the p-values for TAOIs, accuracy, and pupil 
diameter are smaller than 0.05, meaning that the data associated with these indices 
do not conform to a normal distribution.

Based on the normal distribution tests’ results, we conducted significance tests 
between two groups using the T-test for PAOIs and Finish time, and the Mann-Whitney 
U test for TAOIs, accuracy, and pupil diameter, respectively. The mean (M), standard 
deviation (SD), Median (MD), and Interquartile Range (IQR) were used to analyze partici-
pant feedback. As shown in Table 4, the p-value ¼ 0.003, 0.028, 0.004, 0.010, 
0.034< 0.05 indicated a significant difference between groups A and B in all indices.

As shown in Figure 15(a), the PAOIs increased by 14% when participants observed 
augmented scenes (Group B, M¼ 0.55, SD ¼ 0.12) compared to normal scenes(Group 
A, M¼ 0.41, SD ¼ 0.12), the MD value of group B was greater than group A, and the 
IQR of group B was approximately distributed in the interval (0.5, 0.6), which 
suggested that participants have more interests on augmented scenes. As shown in 
Figure 15(b), the TAOIs of participants on the augmented scene (Group B, M¼ 0.65, 
SD ¼ 0.81) was shorter than the normal scene (Group A, M¼ 1.34, SD ¼ 1.23), and the 
MD value of Group B was close to the lower quartile, indicating that the proposed 
approach is able to attract users’ attention more quickly since the background blurring 
that reduces the distraction of non-relevant information. The compound graphic varia-
bles can stimulate and draw users’ visual attention.

In terms of the finish time of given tasks, the participants involved in the aug-
mented scene (Group B, M¼ 14.42, SD ¼ 5.72) took less time than the normal scene 
(Group A, M¼ 21.13, SD ¼ 5.99), and the MD value of normal scene is close to the 
upper quartile (Figure 15(c)), which suggested that the augmented representation pro-
posed in this article can effectively improve the users’ ability to read maps or scenes. 
In contrast, the accuracy of given tasks of the augmented scene (Group B, M¼ 0.84, 
SD ¼ 0.17) increased by 21% compared to the normal scene (Group A, M¼ 0.63, SD ¼
0.21), and many participants were able to answer the questions with 100% accuracy 
(Figure 15(d)), which indicated that the augmented scene could effectively enhance 
the participants’ understanding and cognition of bridge stress.

Regarding the pupil diameter of participants during the experiment, the group who 
observed the augmented scene (Group B, M¼ 2.82, SD ¼ 0.34) was smaller than the 
normal scene (Group A, M¼ 3.13, SD ¼ 0.57), and the MD value of augmented scene 
is close to the lower quartile (Figure 15(e)), suggested that the cognitive load of 
Group B was less than that of Group A during the experiment.

In summary, the analysis results of all indices showed that compared with scene A, 
scene B can quickly draw the user’s attention to focus on the AOI in the 3D scene. 
There was a significant increase in the accuracy of completing the given task while 
using less finish time, and the participants had lower cognitive load, indicating that 
the proposed method can effectively improve the user’s cognitive efficiency of geo-
graphic scenes.
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5. Discussion

In this article, we innovatively introduced visual attention into geovisualization, which is 
beneficial for people to capture critical information in geographic scenes. Nevertheless, 
the following points are still worth discussing, and we encourage the readers to apply 
further creative thinking to tackle the challenges presented in this context.

Regarding background simplification, we actually had two alternatives for implement-
ing the Gaussian blur algorithm in the prototype system. The first option involves directly 
blurring the screen pixels outside the overlapping vision, as outlined in this article. It is 
also possible to blur the geographic objects in the scene, which can be performed by 
reprojection, progressively blurring based on the distance between the objects and the 
central point. However, it is important to emphasize that both options end up blurring 
the screen pixels. The difference between them is that the second type of blurring is 
highly relevant to spatial orientation, distance, and scale. It provides an avenue for inves-
tigating the correlations between scene interaction, background blurring, and user 
perception, which is also a research question worthy of our in-depth study.

According to the statement of Dragoi (2020), the overlapping vision formed by bin-
ocular fusion is irregular. However, this article computed a rectangular mask to present 
the overlapping vision area instead of an irregular mask. Theoretically, the irregular 
mask formed by binocular fusion can be calculated if we access more parameters of 
the eyes, such as visual acuity, color vision, and so on. From a practical perspective, 
obtaining these parameters requires more sensors of visual perception and neurosci-
ence knowledge, which is beyond the scope of this article. Nevertheless, the authors 
have strategically mentioned this point here and look forward to interdisciplinary col-
laborations to address this challenge.

In the cognitive evaluation conducted in this study, fixations and pupil diameter 
were chosen as the eye-tracking analysis indices due to hardware constraints. As Dong 
et al. (2019) stated, eye movement metrics can be classified into three categories 
according to their cognitive patterns: information processing, visual search, and cogni-
tive burden metrics. Specifically, fixation and saccade can characterize information 
processing and visual search processes, respectively. Furthermore, changes in the 
brain’s cognitive load cause the corresponding changes in pupil size. Consequently, 
pupil size is also commonly used to characterize the level of cognitive load. Therefore, 
we are coordinating with the cartography lab to introduce a new eye-tracking device 
to allow more in-depth eye-tracking analysis to address cognitive issues in more 
complex geographic scenes.

In terms of promoting the augmented representation approach, we took the bridge 
stress visualization as an example in this article. However, bridge stress is a specialized 
field with a limited amount of geoinformation, making the amount of stimuli in the 
eye-tracking experiment relatively small. In this context, we are actively applying the 
proposed approach to other fields, including but not limited to smart cities and disas-
ter management. Compared with bridge stress, disasters involve more diverse spatial 
information, which facilitates the design of more prosperous stimulation experiments 
of eye-tracking. It also throws up a research question of balancing the amount of 
information within AOI and its context visibility to avoid information overload that 
increases the cognitive load.
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6 Conclusion and outlook

Following the laws of visual perception of the human eyes, this article proposed a vis-
ual attention-guided augmented representation approach of geographic scenes. First, 
related terms, such as visual attention and augmented representation, were defined. 
Second, we introduced AOI computation and background simplification, 3D represen-
tation of bridge stress, and compound graphic variables in detail. Third, focusing on 
bridge stress visualization as a case study and performed a cognitive analysis of the 
augmented representation using eye-tracking. We aim to propose a novel geovisuali-
zation approach from the visual perception perspective to promote geo-knowledge 
communication. The main contributions of this article are summarized as follows.

Augmented representation offers a new idea for the theoretical studies of geovisu-
alization. The inherent thinking of detailed geovisualization inevitably increases the 
cognitive load of visual information processing. However, attention shifting and visual 
information processing distinguish human visual scanning of a specific scene. In other 
words, the eyes will prioritize searching for the AOI and ignore other areas that do 
not attract visual attention, and the salient visual stimulus is beneficial for drawing 
attention and decoding geoinformation. Leveraging the above visual cognitive mech-
anism, we computed the AOI considering FOV, blurred the background to reduce the 
interference of irrelevant information, and introduced the compound graphic variables 
to provoke high neural responses and draw visual attention. The main objective is to 
help people in swiftly capture critical information, which was also verified in our eye- 
tracking experiment on bridge stress visualization. In summary, augmented representa-
tion provides new research ideas for efficient geovisualization and could be applied to 
visualize many geographical phenomena.

In the future, a topic worthy of investigation is the exploitation of the user inter-
action feedback. This valuable information could be coupled with deep learning, e.g. 
graph attention networks, for the anticipation and prediction of user focus and prefer-
ences for the iterative optimization of geographic scene representations.
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