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1  | INTRODUC TION

In recent years, global climate change and rapid economic growth have increased the frequency and inten-
sity of natural and human- made disasters, posing severe challenges to disaster prevention and mitigation (Ao 
et al., 2020, 2021; Bhatt, Mall, & Banerjee, 2015; Ryan, Johnston, Taylor, & McAndrew, 2020; Li et al., 2020). 
Knowledge communication plays a central role in improving public awareness and making scientific decisions 
(Dawson & Johnson, 2014). It can eliminate people’s optimistic bias and illusion of safety (Spittal, McClure, Siegert, 
& Walkey, 2005), change their conceptual approach to mitigation, and enhance their risk awareness, thereby 
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improving their prevention abilities and reducing disaster losses (Burningham, Fielding, & Thrush, 2008; Day, 
2011; Smith, Porter & Upham, 2017).

Disaster information representation acts as a bridge between disaster knowledge and public perception, which 
is a gradual process influenced by social, cultural, and scientific factors (Andrienko, Fabrikant, Griffin, Dykes, & 
Schiewe, 2014; Bodum, 2005; Glander & Döllner, 2009; Li et al., 2021; MacEachren, 2004). It explains what, 
where, why, when, and how for a given disaster from the geospatial perspective (Bandrova, Zlatanova, & Konecny, 
2012). In primitive times, oral and written records provided information about the nature of disasters. However, 
with the development of cartography and information science, maps and geographic information science (GIS) 
make it possible to identify and understand more complex disaster problems, and they have been used to un-
derstand the geographic context of disasters for a long time (Cariolet, Vuillet, & Diab, 2019; Dang et al., 2021; 
Klimešová & Brožová, 2012; Tomaszewski, 2020).

In addition, inspired by Michael Batty’s (1997) virtual geography theory, the concept of the virtual geographic 
environment (VGE) was proposed in 1998 and used in various applications (Dang et al., 2021; Lin et al., 2013; Luo 
et al., 2021). It has been widely used for disaster phenomenon simulation and multi- dimensional visualization, con-
tributing to a deeper understanding of the real disaster environment (Ding et al., 2015; Guo et al., 2021; Li et al., 
2021; Lin et al., 2013; Pirasteh, Shamsipour, Liu, Zhu, & Chengming, 2020). Nevertheless, the current representa-
tion of disaster information has remained a challenge and a hot topic among researchers.

Recently, the topic of virtual reality (VR) has become more and more popular (Chen & Lin, 2018; Dang et al., 
2021; Hu et al., 2018; Luo et al., 2021). In addition, the rise of augmented reality (AR) and mixed reality (MR) has 
enriched the way disasters are expressed. There are also enhanced virtual or mixed virtual– real disaster envi-
ronments that allow users to have a more natural and realistic risk perception and experience (Chen & Lin, 2018; 
Rydvanskiy & Hedley, 2021; Zhang, Gong, et al., 2020). All of the above achievements have led to a continuous 
improvement in the representation of disaster information and knowledge communication.

However, to the authors’ knowledge, the applications, designs, and specific challenges have not been in-
vestigated comprehensively in disaster information representation thus far. Therefore, this article is focused 
on the following objectives: (1) to review the inventory of the current state of the art for maps, GIS, and 
VGEs for disaster information representation; and (2) to improve the efficiency of knowledge communication. 
Some basic ideas for improving the quality and effectiveness of disaster information representation are also 
proposed.

The remainder of this article is organized as follows. In Sections 2 and 3 a background is given and related 
works are introduced. In Section 4 some basic ideas are proposed for improving the representation efficiency 
of disaster information. Finally, Sections 5 and 6 present the discussions, conclusions, and suggestions for going 
forward.

2  | BACKGROUND

2.1 | What is disaster information representation?

There are various definitions of the term “representation,” but they mainly involve two aspects. One definition in 
the UK dictionary powered by OXFORD LEXICO is as the description or portrayal of someone or something in a 
particular way or as being of a certain nature. Another definition is the use of signs that stand in for and take the 
place of something else (Mitchell, 1995). The former is focused on subjective comments made about people or 
things that influence subsequent opinions or actions, as described in Merriam- Webster. In contrast, the latter can 
be called visual representation, which explores the association of symbols with their referents and how ideas and 
knowledge can be communicated through symbols (Lurie & Mason, 2007).
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In brief, visual representation can be understood as visualization in its various forms. This form of representa-
tion is not just a detailed diagram but an accurate description of things and their relationships (Lurie and Mason, 
2007). In other words, natural disasters have a strong spatiotemporal component; therefore, maps and virtual geo-
graphical scenes can play a decisive role in disaster information representation (Dransch, Rotzoll, & Poser, 2010).

However, disaster information representation is interpreted in this article as taking virtual geographical scenes 
as the basic carrier and using efficient data management, filtering, and visual representation to enable semantic 
enhancement and a deep focus on key disaster scene information. This expands the public’s understanding of the 
causes, evolution, and results of disasters and thus improves disaster awareness (Dransch, Etter, & Walz, 2005; Li 
et al., 2019, 2020, 2021).

2.2 | What is the role of representation in disaster knowledge communication?

Visual representation is a way to visualize knowledge and a bridge for knowledge communication between peo-
ple. The main visual representations aimed at knowledge communication include heuristic sketches, conceptual 
diagrams, visual metaphors, knowledge animation, and knowledge maps (Eppler & Burkhard, 2004). Disaster 
knowledge communication is a process of encoding and decoding disaster- related information. From a geospatial 
perspective, a conceptual diagram is a structured visual representation that effectively organizes and manages 
disaster objects and their interrelationships to support and develop dynamic maps and three- dimensional (3D) 
representations. The use of dynamic representations in the decoding process can enhance the interpretability of 
disaster information and facilitate mental mapping by the public (Macchione, Costabile, Costanzo, & De Santis, 
2019; Qiu, Du, Zhu, & Fan, 2017; Yuan & Hornsby, 2007).

However, the role of representation in disaster knowledge communication varies in several ways. They include: 
(1) reporting disaster facts in the media— including social networks and story maps (Scholz & Jeznik, 2020)— and 
transmitting disaster situations to the public; (2) dynamically visualizing the entire disaster process and communi-
cating knowledge to the public, thus improving their disaster awareness about the hazard itself and warning sig-
nals; (3) providing concrete information about a hazard, such as location or time; and (4) making information about 
suitable protection measures available (Dransch, Rotzoll, & Poser, 2010; Palttala, Boano, Lund, & Vos, 2012).

3  | REL ATED WORK: PROGRESS AND CHALLENGES

3.1 | Oral and written communication

People have experienced various kinds of disasters since early human history, and disasters have been ex-
plored over a relatively long historical period. In primitive times, people mainly relied on word of mouth to 
transmit disaster information. Oral communication is the oldest method of disaster knowledge communication 
and remains prevalent today (Cai & Yao, 2012). Hopkins (1999) believed that knowledge based on experi-
ence was far more reliable, so that disaster knowledge acquired by word of mouth was more influential than 
information conveyed by the written word. Zhang, Zhu, et al. (2014) stated that oral communication plays an 
important role in disaster pre- warning information dissemination when all electronic networks are paralyzed, 
and the Monte Carlo method was used to simulate the pre- warning information dissemination process and 
tornado risk. The experimental results showed that population density is the most important influencing fac-
tor. O’Brien and Federici (2019) highlighted that oral and written communication channels could be used at 
different stages of a crisis with different audiences. Moreover, an individual may act as a translator of oral or 
written content in one crisis instance. Sjoraida and Anwar (2018) pointed out that there is a sharp distinction 
between oral, written, and electronic media in risk communication. Electronic media are near- instantaneous 



4  |    LI et aL.

TA
B

LE
 1
 

Su
m

m
ar

y 
of

 p
ap

er
s 

on
 o

ra
l a

nd
 w

rit
te

n 
co

m
m

un
ic

at
io

n

N
o.

Re
fe

re
nc

e
M

et
ho

d
St

re
ng

th
W

ea
kn

es
s

A
ut

ho
rs

’ o
pi

ni
on

1
Fu

jii
, T

am
an

o,
 a

nd
 H

at
to

ri 
(2

02
1)

G
en

er
al

 
co

m
m

un
ic

at
io

n
V

iv
id

ne
ss

La
ck

 o
f a

cc
ur

ac
y

A
 h

yb
rid

 a
pp

ro
ac

h 
by

 c
om

bi
ni

ng
 

tr
ad

iti
on

al
 a

nd
 m

od
er

n 
di

sa
st

er
 p

re
ve

nt
io

n 
kn

ow
le

dg
e

2
Sj

or
ai

da
 a

nd
 A

nw
ar

 (2
01

8)
Li

te
ra

tu
re

 o
ve

rv
ie

w
O

ra
l c

om
m

un
ic

at
io

n 
ca

n 
in

flu
en

ce
 

m
ut

ua
l e

xp
ec

ta
tio

ns
 a

m
on

g 
in

di
vi

du
al

s 
to

 a
dj

us
t t

he
ir 

be
ha

vi
or

Sl
ow

 p
ro

pa
ga

tio
n 

an
d 

bo
un

d 
by

 
tim

e 
an

d 
pl

ac
e

Tr
yi

ng
 to

 c
om

bi
ne

 o
ra

l, 
w

rit
te

n,
 

an
d 

el
ec

tr
on

ic
 m

ed
ia

3
O

’B
rie

n 
an

d 
Fe

de
ric

i (
20

19
)

Li
te

ra
tu

re
 o

ve
rv

ie
w

In
di

vi
du

al
s 

ca
n 

tr
an

sl
at

e 
an

d 
tr

an
sm

it 
or

al
 o

r w
rit

te
n 

co
nt

en
t t

o 
ot

he
rs

C
om

m
un

ic
at

io
n 

is
 n

ot
 o

pt
im

al
 

in
 in

fo
rm

at
io

n 
di

ss
em

in
at

io
n 

sp
ee

d

Th
ey

 c
an

 b
e 

us
ed

 fo
r 

co
m

m
un

ic
at

io
n 

in
 e

ar
ly

 
di

sa
st

er
 p

re
pa

ra
tio

n

4
Zh

an
g,

 Z
hu

, e
t a

l. 
(2

01
4)

C
om

pa
ra

tiv
e 

an
al

ys
is

 
an

d 
ev

al
ua

tio
n

O
ra

l c
om

m
un

ic
at

io
n 

ca
n 

be
 u

se
d 

in
 s

om
e 

se
rio

us
 d

is
as

te
r c

as
es

D
is

as
te

r i
nf

or
m

at
io

n 
ca

n 
be

 
di

ss
em

in
at

ed
 o

nl
y 

w
ith

in
 a

 
lim

ite
d 

di
st

an
ce

U
si

ng
 d

iff
er

en
t c

om
m

un
ic

at
io

n 
m

ed
ia

 a
cc

or
di

ng
 to

 d
iff

er
en

t 
di

sa
st

er
 s

itu
at

io
ns

5
H

op
ki

ns
 (1

99
9)

G
en

er
al

 
co

m
m

un
ic

at
io

n
D

is
as

te
r k

no
w

le
dg

e 
ac

qu
ire

d 
by

 w
or

d 
of

 m
ou

th
 w

as
 m

or
e 

in
flu

en
tia

l t
ha

n 
th

e 
w

rit
te

n 
w

or
d

Li
m

ite
d 

by
 ti

m
e 

an
d 

sp
ac

e
Th

e 
co

m
bi

na
tio

n 
of

 o
ra

l a
nd

 
w

rit
te

n 
co

m
m

un
ic

at
io

n



    |  5LI et aL.

and not bound by time and place. Thus, it can broadcast more widely than oral and written communication. 
Furthermore, Fujii, Tamano, and Hattori (2021) argued that oral communication conveys the experience of past 
disasters, possesses vividness, and can induce rapid evacuation of people during disasters by acting on their 
emotions, such as fear or anxiety. In fact, when a disaster occurs, victims exchange information regarding what 
they saw, heard, and felt, and members of their audience become new communicators and spread informa-
tion to others. This approach can vividly convey the “fear” of a disaster to influence people’s emotions (Fujii, 
Tamano, & Hattori, 2021). However, oral communication requires communicators to store information in their 
minds and respond verbally. Moreover, written communication allows one to manipulate, edit, and change 
the text and then redistribute risk messages to others (Sjoraida & Anwar, 2018). Such communications have 
limitations, such as the lack of accuracy from the perspective of modern disaster prevention research. Table 1 
illustrates the strengths and weaknesses of oral and written communication. In addition, disaster knowledge 
can be disseminated and communicated only within a limited distance. With the emergence of text and paper 
and social media, the representation of disaster information has gradually overcome time and geographical 
limitations. The combination of oral and written communication greatly enhances the dissemination of disaster 
knowledge (Allen, Stanton, Di Pietro, & Moseley, 2013; Uchida, Takahata, Shibata, & Shiratori, 2011). However, 
due to the lack of positioning, measurement, and visual modeling functions in text and paper media, it is dif-
ficult to convey abundant information and accurate knowledge to the public (Chen, Lin, Kolditz, & Chen, 2015; 
Lin et al., 2013).

The following subsection describes the role of social media and story maps in disaster mapping and GIS 
representation.

3.2 | Disaster mapping and GIS

We have seen progress in artificial intelligence (AI) techniques, particularly in geospatial applications and the large- 
scale availability of high- quality data, high- definition (HD) maps and 3D models (Dehbi, Hadiji, Gröger, Kersting, 
& Plümer, 2017; Liu, Wang, & Zhang, 2020). Advances in both hardware and software to efficiently process these 
data can transform a range of fields from computer vision, including AR, MR, VR, and 3D dynamic representation, 
and natural language processing to mapping and disaster management (Scholz & Jeznik, 2020). For example, the 
availability of high- resolution geographic data and high- performance computing techniques incorporating deep 
learning technology in a fast and accurate manner can be exploited for object detection and mapping after an 
earthquake to support the rescue and relief team.

In recent years, due to the potential of social networks and AI techniques, particularly in geospatial areas, 
and the large- scale availability of high- quality data for representation, researchers have used them more often 
in crisis management studies (Dang et al., 2021; Scholz & Jeznik, 2020; Zhu et al., 2020). Social networks are 
rich sources of event information. For example, there are two GeoThings (https://geoth ings.tw/, http://appx.
georvs.cn/; https://app.georvs.ca) and social platforms to support disasters and resilience. This information 
includes text and images shared by eyewitnesses, which can be used in disaster simulation and damage as-
sessment. With the development of wireless networks and mobile technologies, people can play an important 
role in news distribution following natural disasters such as earthquakes. Because social networks provide the 
ability to exchange personally created content, the information extracted by these networks can include tem-
poral and spatial data associated with different events. One of the benefits of social network data is its online 
nature: data are immediately available. The other attribute is its in situ nature: it can be gathered in the case 
of local conditions, such as street accessibility, blocked streets, injured people, damage to buildings and other 
infrastructure (Wu & Cui, 2018). These data can be used in post- disaster assessments to provide information 
layers that are less time- consuming than those based on remote sensing methods and geospatial artificial 
intelligence (GeoAI) techniques.

https://geothings.tw/
http://appx.georvs.cn/
http://appx.georvs.cn/
https://app.georvs.ca
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Moreover, the opportunities in open- source and cloud- based sharing open geospatial training data sets have 
improved disaster services and GIS mapping (https://www.radia nt.earth/ mlhub/). Therefore, it has been shown 
that users tend to share their status during a disaster on social networks, indicating the potential of such networks 
for a quick damage assessment. Furthermore, previous research has shown that the severity of damage in a region 
has a direct correlation with the amount of disaster- related social media content generated from the same region 
(Scholz & Jeznik, 2020; Wu & Cui, 2018).

Some of the most active social networking sites, such as Twitter, WhatsApp, WeChat, Instagram, Youku, and 
YouTube, provide people free access to personal information, including text messages, location, and social rela-
tionships. All of these features have resulted in the inclusion of Twitter/WeChat and other social media in crisis 
management studies (Zhang, Wu, Wang, & Su, 2017). Therefore, creating visualization and representation plat-
forms for partnering people and various sectors to support the disaster management process can improve the 
understandability of rescue and relief assessment plans. For example, Li and Rao (2010) explored the role of 
Twitter in providing rapid response news during the Sichuan earthquake of 2008. The Sichuan earthquake was 
China’s largest natural disaster in 30 years. Here, we note that a broader use of social media has proliferated the 
spread of fake news and misinformation during a natural disaster or catastrophe (Allcott, Gentzkow, & Yu, 2019; 
Torpan et al., 2021). Therefore, it is necessary for social media data to be filtered and cleaned before further visual 
representation.

Since disasters have a strong spatiotemporal component, maps can play a decisive role in knowledge commu-
nication (Dransch, Rotzoll, & Poser, 2010). Disaster maps include hazard maps and risk maps. The former are also 
called damage maps, and are used to show the consequences of a specific disaster event; the latter reflect the 
possibility of a disaster event occurring. These two concepts are mixed in many cases (Meyer et al., 2012). Disaster 
maps are most widely used in flood information representation (Henstra, Minano, & Thistlethwaite, 2019). Flood 
simulation software, such as MIKE (https://www.mikep owere dbydhi.com/), HEC (Hydrologic Engineering Center, 
https://www.hec.usace.army.mil/), FLO- 2D (https://flo- 2d.com/), and Delft 3D (https://oss.delta res.nl/web/delft 
3d/), can be used to calculate the extent, flow velocity, and water depth. This information is overlaid with capac-
ity/resource maps and social maps on GIS platforms to analyze the risk level of houses and roads, and then the 
final spatial distribution and accessibility are presented through map symbols and colors (Liu & Wu, 2018; Meyer 
et al., 2012; Ntajal, Lamptey, Mahamadou, & Nyarko, 2017; Symonds et al., 2016; Thakur, Parajuli, Kalra, Ahmad, 
& Gupta, 2017; Waldman et al., 2017; Wu, Liu, & Chen, 2013). However, cartographers and disaster management 
professionals guide the investigation and design of disaster maps and their thematic focus, which can often lead 
to the contents of disaster maps not matching the requirements of the public, and the representation methods 
cannot be easily understood (Holub & Fuchs, 2009; Meyer et al., 2012).

In addition, Mark, Freksa, Hirtle, Lloyd, and Tversky (1999) believed that the first stage of human geospatial 
cognition is to obtain direct and straightforward spatial information. In other words, the first question that needs to 
be answered in a disaster information representation and mapping is “where is the disaster?” (Bandrova, Zlatanova, 
& Konecny, 2012; Martin & James, 1993). GIS and story maps through social media turn out to be useful tools for 
visualization and mapping of disaster risks (e.g., debris flows, earthquakes, floods, tornadoes, and landslides) and 
emergency management in most parts of the world. For example, Figure  1 shows the spatial distribution of maximum 
debris flow depths under different grid cell sizes. Moreover, research has shown that outputs are efficient and valu-
able in disaster management (Bednarik, Yilmaz, Martin & James, 1993; Dang et al., 2021; Luo et al., 2021; Marschalko, 
2012; Ntajal et al., 2017; Tate et al., 2011). Thus, the combination of social media, GeoAI, GIS spatial analysis, and 
visualization of maps can effectively tell us where buildings are damaged, where roads are open for evacuation, and 
where supplies should be stationed for planning purposes (Andrienko et al., 2014; Tomaszewski, 2020).

Furthermore, to reduce the professionalism of disaster maps and make them more accessible to the public, the 
use of social media, such as WeChat and Open GIS, story maps, and open sources is advised. Moreover, panel discus-
sions and questionnaires have been conducted in some studies to enable users to participate in the mapping process 
(Gaillard & Pangilinan, 2010; Liu & Wu, 2018; White, Kingston, & Barker, 2010). For example, a participatory GIS 

https://www.radiant.earth/mlhub/
https://www.mikepoweredbydhi.com/
https://www.hec.usace.army.mil/
https://flo-2d.com/
https://oss.deltares.nl/web/delft3d/
https://oss.deltares.nl/web/delft3d/
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has been developed to engage the public in flood risk management and used participatory mapping to raise disaster 
risk awareness among youth in the Philippines. Furthermore, participatory and collaborative risk mapping have been 
incorporated to enhance disaster resilience. However, although a disaster map can present the public with basic disas-
ter information, such as the inundation area, water depth, and affected buildings, the capacity of a 2D map to carry 
information is limited. Therefore, it is difficult to support the dynamic visualization of the whole process of disaster 
evolution (Li et al., 2020). Nevertheless, Table 2 gives a summary of papers on disaster mapping and GIS.

3.3 | Virtual disaster scenes in three dimensions

Three- dimensional dynamic visualization increases the efficiency of interpreting data. It helps people to un-
derstand the connotations of data quickly and improves spatial information cognition (Bülthoff, Campos, & 
Meilinger, 2008; Li et al., 2020). Virtual disaster scenes in three dimensions break through the deficiencies 
of 2D maps in the representation of spatial dimensions and provide a more intuitive option for understand-
ing and analyzing the real world. Some researchers have applied the smoothed particle hydrodynamics (SPH) 
method (Lin et al., 2020) and virtual reality platforms (Winkler, Zischg, & Rauch, 2018) to simulate free surface 
motion and 3D flood dynamics in large-  and small- scale urban scenes through computer graphics. Moreover, 
the natural environment has been analyzed by the volume of fluid (VOF) method (Munoz & Constantinescu, 
2018). However, disaster situations in the 3D dynamic visualization of the environment and VGE require more 
in- depth studies. More details can be found, for example, in Renschler and Wang (2017), Lü et al. (2019), Lin 
et al. (2020), and Luo et al. (2021).

F I G U R E  1 Example for visualization and mapping disaster risks: Spatial analysis of debris flow depths under 
different grid cell sizes (Yin et al., 2017)
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A VGE is derived from 3D GIS and geography and is described as a computer- based digital geographic en-
vironment for geographic assessment and problem- solving (Lin et al., 2015). It aims to provide an open, digital 
window for the real physical world, allowing people to understand beyond reality through geographic simulations 
and immersive experiences (Chen & Lin, 2018; Lü et al., 2019; Lin et al., 2013). In addition, disaster information 
representation based on VGE can support disaster process simulation, multi- dimensional dynamic visualization, 
and public participation, which constitutes a great leap forward in disaster information representation and risk 
knowledge communication.

Many researchers have constructed virtual disaster scenes by integrating VGE with geographic models to 
support diverse disaster prevention and mitigation applications (Denolle, Dunham, Prieto, & Beroza, 2014; Li 
et al., 2021; Wang et al., 2016; Yu et al., 2021), which mainly includes three aspects: (1) 3D numerical simulation 
representation; (2) photorealistic 3D visualization; and (3) non- photorealistic 3D visualization. For example, Lai 
et al. (2011) used a verified 3D flow numerical model as input data to build an interactive 3D virtual environment, 
which increased interactivity between stakeholders and improved communication efficiency from public partic-
ipation in a 3D virtual environment flood representation. Wang et al. (2016) realized 3D numerical simulation of 
debris flow motion using the SPH method by incorporating non- Newtonian fluid behavior, which reproduces well 
the debris- flow process and benefits the analysis of flow characteristics and affected areas for risk assessment 
and mitigation design. Later, a workflow was developed for the representation of 2D hydraulic simulations within 
a 3D virtual environment (Macchione et al., 2019). It was used to support scientists, technicians, and the public for 
emergency management in flood risk communications.

Regarding the photorealistic 3D visualization of disasters, Yang et al. (2008) extended the traditional SPH method to 
realize the interaction between the solid phase and liquid phase, which successfully simulates floods, landslides, and de-
bris flows with different mixtures and vividly demonstrates the process of multiphase flow destroying buildings. Later, 
Evans et al. (2014) created a realistic 3D visualization of flooding in Exeter, UK. They demonstrated that a 3D virtual 
environment is a powerful tool in changing flood risk perceptions and raising awareness of residuals.

Furthermore, non- photorealistic 3D visualization turns out to be an enabling technology for designing and 
implementing effective visualization systems and overcoming the traditional mindset established by photorealis-
tic computer graphics (Döllner, 2007; Jahnke, Meng, Kyprianidis, & Döllner, 2008). It is used to represent disaster 
information and transmit disaster knowledge to the public. For example, numerical simulation, risk analysis, and 
non- photorealistic 3D visualization of debris flow disasters have been integrated into a VGE system to provide an 
efficient tool to support risk analysis, real- time interaction, and geographic knowledge sharing (Yin et al., 2017). 
Later, Li et al. (2019) proposed a fusion visualization method for disaster information based on self- explanatory 
symbols and photorealistic scene cooperation. They found that the combination of non- photorealistic visualiza-
tions (such as language, symbols, and color) and photorealistic visualizations can reveal more disaster semantic 
information while ensuring a certain degree of realism. Moreover, the literature has shown that the vivid repre-
sentation of disaster information plays a crucial role in practical knowledge and risk communication because vivid 
information may improve memorability and the construction of mental representations (Dransch, Rotzoll, & Poser, 
2010). For example, Figure 2 shows a rapid 3D reproduction of dam- break floods. Previous studies on virtual di-
saster scenes in three dimensions are summarized in Table 3.

3.4 | Challenges and gaps in current disaster information representation

Based on the previous sections and the literature, the authors highlight the five major challenges for disaster 
information representation. 

1. Social engagement and participation in data sharing and reliable information are lacking in developing 
disaster GIS maps and 3D representation. However, data privacy requires a compendium on licensing 
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of geospatial information, which was developed 2018 by the United Nations Committee of Experts on 
Global Geospatial Information Management (UN- GGIM) (https://ggim.un.org/docum ents/E- C20- 2018- 9- 
Add_2- Compe ndium - on- Licen sing- of- Geosp atial - Infor mation.pdf)

2. Social media have improved the efficiency and scope of disaster information communication, but at the same 
time, they also bring some misinformation. Filtering and cleaning social media information is an important part 
of the disaster information and representation process.

3. Lack of efficient data management. Disaster data have become increasingly abundant with the continu-
ous development of Earth observation and sensor networks and Internet of Things (IoT) technologies. 
Therefore, how to efficiently manage disaster data and their relationships is a problem that needs to be 
solved.

4. The content of a 3D scene is overloaded. In 3D scene construction, all disaster data put into the virtual scene 
will lead to information overload. Thus, it is necessary to select data with different needs in mind.

5. Scarcity of semantic information. The existing scene representation focuses on visualization and does not con-
sider the cognitive needs of the public, which leads to scarcity of semantic information and inefficient public 
perception.

4  | BA SIC IDE A S FOR IMPROVING REPRESENTATION EFFICIENCY

This article proposes some basic ideas to comprehensively represent disaster information and to improve the rep-
resentation efficiency of disaster information; these mainly include a disaster knowledge graph, optimal selection 
of scene data, and augmented representation, as shown in Figure 3.

Before detailing the three core modules, it is necessary to briefly describe the processing and cleaningof data. 
Because disaster data have differences (e.g., in source, format, and multimodality), data processing and cleaning 
(e.g., format conversion, space- time unification, and filtering) are consequently required before disaster data or-
ganization and management.

F I G U R E  2 A rapid 3D reproduction of dam- break floods supporting communication and improving 
memorability (Luo et al., 2021)
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Here, we would like to emphasize the importance of the data filter. Social media continuously generate a large 
amount of information, which will inevitably include some misinformation and false information. This may have 
extremely negative impacts during a disaster or a social event. In this context, many approaches deal with this in-
creasingly important topic. For instance, Torpan et al. (2021) proposed some strategies to handle misinformation, 
such as the level of organization in tackling false information, emphasis on spreading truthful information, semi- 
official management mechanisms, and campaigns to enhance awareness of false information. From a geospatial 
perspective, machine learning, deep learning, and spatial analysis can be used to filter out misinformation and false 
information from social media.

For example, public awareness of Covid- 19 has been adversely affected by misinformation on social media. 
In terms of misinformation handling, a set of pandemic misinformation keywords (e.g., do not stay at home, city 
lockdown) can be developed, and then deep approaches, such as convolutional or recurrent neural network mod-
els, can be designed for automatically identifying and filtering misinformation from social media (Ajao, Bhowmik, 
& Zargari, 2018; Liu & Wu, 2018). Moreover, it is also meaningful to analyze the patterns and factors influencing 
misinformation dissemination from a geospatial analysis perspective (Forati & Ghose, 2021; Wang, Zhang, Fan, & 
Zhao, 2021).

This section explains the three core components of our framework to improve the representation efficiency 
of disaster information.

4.1 | Disaster knowledge graph for multilevel visualization tasks (step 1)

The development of space– air– ground integrated Earth observation images and sensor network technolo-
gies has greatly improved the ability to obtain disaster data (Dehbi, Klingbeil, & Plümer, 2020; Li, 2016). These 

F I G U R E  3 Overall framework of improving the representation efficiency of disaster information
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advancements have provided a good opportunity for people to understand disasters and create challenges for 
disaster information management, analysis, and representation (Qiu et al., 2017).

People’s demand for disasters extend from viewing to analyzing and the acquisition of disaster knowledge, 
which is closely related to multilevel visualization tasks, such as view- only visualization, analytical visualization, 
explorative visualization, and geospatial analysis (Zhu & Fu, 2017). Therefore, clarifying the correlation between 
multilevel visualization tasks and disaster data and establishing a unified semantic description allows disaster 
knowledge to be shared at a semantic level (Couclelis, 2010) and knowledge graphs to be drawn.

A knowledge graph describes relevant concepts and their relationships in the real physical world using an 
entity– relation– entity triple to provide a structured knowledge base (Jiang et al., 2018; Li et al., 2020, 2021). 
Based on the knowledge graph, semantic associations between multilevel visualization tasks and disaster data 
are established to solve problems related to isolation and the lack of associations among disaster data. The con-
struction of a disaster knowledge graph can be divided into a schema layer and a data layer (Scheuer, Haase, & 
Meyer, 2013). In addition, ontology can be used as a schema layer to define public concepts and relationships for 
the knowledge graph nodes; for example, public Concern

����������������������������→ view- only visualization HasPartOf

������������������������������������→ basic geographic data 
HasInstance

�����������������������������������������→ digital elevation model (DEM) with 0.5 m resolution. Ontology stores are highly abstract and condensed 
disaster knowledge gained via a literature review, expert research, and reference to national or industry standards 
(Clemens, 2014).

In addition, as the basic unit of the knowledge graph, entity and relationship extraction is the core technology 
of knowledge graph construction. Disaster domain knowledge is mainly derived from disaster emergency man-
agement departments’ disaster databases, including disaster spatiotemporal databases, such as basic geographic 
data, thematic data, monitoring data, and simulation analysis data of each disaster area, and disaster assessment 
databases. In addition, the main methods of entity extraction are statistical models (e.g., support vector machines, 
conditional random fields), deep learning (e.g., long short- term memory conditional random fields), and text mining 
(e.g., DBPedia, TextRunner) (Lample, Ballesteros, Subramanian, Kawakami, & Dyer, 2016; Sundheim, 1995). These 
methods allow us to define the relationships between objects and create topology. In other words, disaster do-
main knowledge extraction establishes the correlation between entities and their attributes. Therefore, semantic 
similarity calculation becomes the key to relationship discovery and knowledge fusion (Lord et al., 2003; Kim, 
Vasardani, & Winter, 2017; Toch, Reinhartz- Berger, & Dori, 2011). Thus, the main calculation methods are string 
similarity, distance- based similarity, and content- based similarity. Based on the above, the resource description 
framework and attribute graph models can be used for disaster knowledge storage and formal representation.

To illustrate the feasibility of the above- mentioned ideas, we demonstrate a use case combining a knowledge 
graph and disaster visualization (Li et al., 2020; Zhang et al., 2020), as shown in Figure 4. First, an ontology is 
constructed to manage the concepts and relationships between multitype users (e.g., ordinary people, victims, 
rescuers, experts) and disaster data (e.g., DEM, evolution process, impact range). Based on the acquired ontology, 
a disaster knowledge graph can be designed using multilevel semantic mapping, as shown on the right of Figure 4. 
Then a user instance is designated as the central node. The top- N recommendation set of disaster data for differ-
ent user preferences is inferred by calculating the semantic relevance of the central node to other nodes and rank-
ing them accordingly. Finally, a 3D disaster scene that meets the needs of multiple types of users is constructed 
with the guidance of the top- N set and the new sub- knowledge graphs.

4.2 | Optimal selection of scene data guided by knowledge graph (step 2)

In the process of disaster scene construction, it is difficult to describe the complex geographical process and 
evolution pattern of disasters if the scene data are insufficient. On the other hand, too much data will lead to 
scene information overload and inefficient disaster cognition; therefore, selecting disaster scene data needs to 
be adaptive for different visualization tasks and people’s needs (Zhu et al., 2019). The disaster knowledge graph 
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effectively organizes and manages the complex relationships between visualization tasks and disaster data and 
forms a semantic knowledge network. Nevertheless, it is difficult to quantify each task’s needs for scene data due 
to the lack of a further calculation of semantic relevance (Paulheim, 2017).

There are some recommendation algorithms based on calculating node relevance. For example, Aggarwal 
et al. (1999) proposed a new collaborative filtering approach based on graph theory in which the nodes represent 
users, the edges represent the similarity of the two users, and the information is recommended by combining the 
ratings of nearest neighbor nodes. Zhou et al. (2007) proposed a collaborative filtering method based on network 
inference, and the item recommendation is made by calculating the association degree between user nodes and 
item nodes. However, the commonly used algorithms for semantic relevance calculation are PageRank and per-
sonalized PageRank (Page, Brin, Motwani, & Winograd, 1999). The personalized PageRank algorithm in particular 
first needs to specify a central node, and the central node cannot jump to any node randomly during the random 
walk process but only to the node that has an association with the central node, which reflects the task’s need 
(Pirouz & Zhan, 2017). A hybrid collaborative filtering approach with the joint graph model and semantic relevance 
is potentially advantageous for achieving visualization task- driven disaster data selection (Zhang et al., 2020).

From the previous description, it can be concluded that the hybrid collaborative filtering approach with the 
joint graph model and semantic relevance can be used to calculate the degree of demand for disaster data for spe-
cific visualization tasks and users. However, the calculation process is only based on the association relationship 
between entities in the knowledge graph without considering the historical preference data. This approach has 
improved the intelligence of disaster data selection to some extent, but they still have some subjectivity guided by 
experts. Exploratory visualization allows a large number of users to interact with virtual disaster scenes in three 
dimensions. In the interaction process, their interaction behaviors and data preferences can be recorded, such as 
users’ selection results for different spatial data, users’ viewing time for specific data, and their browsing methods 
for different data. These data reflect users’ preferences. Then we can take full advantage of the learning and pre-
dictive power of deep learning models, a specific deep neural network can be used for multiple rounds of training 
to mine and quantify the user’s preference for the disaster data. For example, RippleNet is an end- to- end frame-
work that naturally incorporates the knowledge graph into recommender systems (Wang et al., 2018). Similar 
to actual ripples propagating on water, RippleNet can depict the spreading process of each user’s preference in 
the entire knowledge graph of disasters, and then the user’s preference index for the disaster data is calculated. 

F I G U R E  4 An example of the construction of personalized virtual landslide disaster environments based on 
knowledge graphs (Zhang et al., 2020)
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Finally, the recommendation degree is ranked, and the result of a calculation based on a knowledge graph and 
deep learning is considered to be a high- precision disaster data recommendation set (Zhang et al., 2020).

4.3 | Augmented representation of scenes considering public perception (step 3)

With the development of computer graphics and the gradual upgrading of software and hardware, photorealistic 
representation has been carried out many applications in the fields of 3D GIS, VGE, and digital cities (Nebiker, 
Cavegn, & Loesch, 2015). For example, reproducing the disaster process in a photorealistic way enriches the con-
tent and quantity of visual information and can facilitate mental mapping (Döllner & Kyprianidis, 2009). However, 
at the same time, the following problems need to be addressed. First, fine geometry and textures will increase the 
amount of scene data. Second, a photorealistic scene exposes the user to a high cognitive workload of information 
processing. Third, users’ attention may be entirely captured by appearances and thus ignore the information under 
the surface (Bunch & Lloyd, 2006; Glander & Döllner, 2009; Jahnke et al., 2008).

In expressing the disaster information process, the key problem is how to use as little information as possible to 
obtain greater efficiency in disaster knowledge transmission for diverse application needs. Thus, rich semantic infor-
mation is better than photorealistic visualization (Li et al., 2019). Generally, there are two ways to enhance the seman-
tic representation of disaster information. From the cartography perspective, combining text, symbols, colors, and 
simple level- of- detail (LOD) models can reveal more disaster semantic information while ensuring a certain degree of 
realism. According to the degree of abstraction of the real world, text has the highest level of abstract representation, 
and can be used for labeling and promoting information. Following disaster symbols, which are self- explanatory and 
have the ability to convey semantic information, they can be adopted to represent the location and accessibility of im-
portant facilities and dangerous facilities. Moreover, simple LOD models maintain the original 3D characteristics but 
reduce the amount of data. Therefore, with the use of simple LOD models with emergency colors to visualize disaster 
data, the effective and augmented representation of disaster information can be realized with a guarantee of a certain 
realism (Jahnke et al., 2008; Li et al., 2019). In a similar context, Kolbe, Gröger, and Plümer (2008) stated that 3D city 
models are a suitable tool with high potential for emergency response. Lee, Park, Park, and Jang (2016) showed how 
3D city models can also serve as a basis for decision- making in the context of urban flooding. In addition, static and 
dynamic visual variables can be combined to emphasize important disaster scene information through visual effects, 
such as flickering and highlighting (Garlandini & Fabrikant, 2009; Li et al., 2021; MacEachren, 2004). The purpose is to 
enhance the focus of key information, attract public attention and improve people’s risk perception.

Furthermore, with the development of VR, AR, and MR technologies and the increasing popularity of 
consumer- grade devices, the representation environment and interaction of virtual disaster scenes have been 
enriched. In addition, immersive disaster scenes have the advantages of strong user experience, natural human– 
computer interaction, and user active perception (Chen & Lin, 2018; Lai et al., 2011; Zhang et al., 2020). Moreover, 
applying eye tracking to virtual disaster cognition can record information, such as gaze direction, area of interest, 
and fixed time. They can quantify the ability of disaster scene objects to convey disaster information and then fur-
ther refine the visual representation (Dong et al., 2018; Popelka & Brychtova, 2013). Thus, immersive experience 
and interaction for disaster publicity and education can help transform the dissemination of disaster information 
from one- way communication guided by experts to two- way communication with public participation. Therefore, 
it can significantly improve the efficiency of the public perception of disaster scenes. Figure 5 shows an efficient 
flood dynamic visualization based on 3D printing and AR, which is useful for assisting participants in understand-
ing flood hazards and providing a more intuitive and realistic visual experience.

In addition, the conceptual framework for improving the representation of efficiency comprises additional 
aspects such as semantic relevance calculation, self- explanatory symbols and photorealistic scene cooperation, 
and immersive 3D representation For more details accompanied by further flow diagrams, the interested reader 
is referred to Li et al. (2019, 2020), Hu et al. (2018), and Zhang et al. (2020).
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5  | DISCUSSION

In this article, we have put forward basic ideas for improving the representation efficiency of disaster information. 
However, there is still room for further discussion, and we hope that our work can inspire readers to apply further 
creative thinking to address the challenges raised here.

Disasters have always been an important threat to human societies. As a result of such crises, many people 
have been affected, injured, and incurred financial losses. Despite some progress and challenges, as indicated 
in this article (cf. Tables 1– 3), maps and 3D virtual environments and scenes can determine the priorities of 
relief workers. The identification of affected areas using maps and 3D scenes after critical events can support 
relief workers in providing emergency services more quickly, and can also make resource allocation more 
efficient.

One of the main resources in mapping and creating 3D scenes for visualizing and representing disasters and 
damage is remote sensing incorporating GeoAI, AR, MR, and VGE techniques. However, methods based on remote 
sensing usually have a time delay of 48– 72 hours or atmospheric limitations, such as cloudy weather; therefore, 
their effectiveness decreases. They are also very costly. In addition, the frequent lack of pre- disaster images 
makes it difficult to detect the correct changes. However, drone images taken immediately after a disaster can 
resolve the delay in acquiring remote- sensing satellite data.

Although presenting disaster events via social networks to make maps and 3D images in a short time can 
provide effective results, the use of various tools, such as sensors and 5G, allows for more accurate results. 
Therefore, integrating social networking information and other information sources can support the production 
of reliable and efficient maps and scenes. The authors’ findings demonstrate that remote sensing images, social 

F I G U R E  5 Flood dynamic visualization approach based on 3D printing and AR (Zhang, Gong, et al., 2020)
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networks and story maps could be good information supplements in GeoAI mapping, 3D scenes and disaster in-
formation representation from the geospatial perspective. Integrating user- generated spatial content with other 
data sources, such as remote sensing and geospatial data, increases the quality of and reduces the time required 
to generate trusted information, 3D virtual environments and maps. However, social engagement and data sharing 
privacy have remained a significant challenge in research and for countries; therefore, more sociocultural educa-
tion is needed in addition to learning technologies.

Moreover, the resilience capacity of a locality can be viewed as its ability to respond to and recover from 
an event utilizing geospatial maps and 3D virtual environments. For example, to know how much a city resists 
hazards and what actions are needed to reach the required level, it is first necessary to estimate and measure 
resilience by defining a framework and utilizing GIS maps and 3D virtual environments. Furthermore, the use of 
dynamic 3D representation of disasters as opposed to static maps is quite helpful to the public (Li et al., 2021; 
Macchione et al., 2019). However, the complexity and information density of 3D disaster scenes can increase 
the public’s memory and cognitive burden. In addition, storytelling and geo- narratives can effectively organize 
the causal logic of disaster events and have potential advantages when communicating disaster knowledge to 
the public. Additionally, designing a scientific and reasonable cognitive experiment is an important part of the 
workflow of disaster information representation, knowledge communication, and risk awareness improvement.

Finally, as a means of non- structural mitigation, disaster education can enrich people’s disaster perception. 
However,the main sources of disaster education and awareness are currently books, newspapers, cartoons, and 
videos, which have played an active role in disseminating disaster knowledge (Kelman, 2015). However, they rely 
excessively on “publicly available images and texts.” The authors hope that open GIS and open sources and data 
can enrich disaster GIS mapping, 3D visualization and disaster education. Furthermore, social media can con-
tribute to education and develop reliable geospatial disaster information, GIS mapping, and 3D representation. 
Nevertheless, from the geospatial perspective, integrating a 3D representation of the whole disaster process into 
disaster education can deepen the public’s understanding. This is because it is apparent that the more interactive 
and public- oriented communication material there is, the better disaster information is understood. Thus, devel-
oping algorithms and integrating new immersive technologies, such as VR, AR, and MR, should be a significant 
research stream in disaster education.

While these new technologies empower the general public to contribute to and engage in disaster management, 
they also act to marginalize others (Haworth & Bruce, 2015). We must be aware that the digital divide makes it dif-
ficult for members of the public with limited socioeconomic circumstances to access the rapidly expanding digital 
world (Van Dijk & Hacker, 2003), which means that the introduction of new geoinformation technologies in disaster 
education cannot ignore the conventional text-  and image- based means. According to statistics, global 4G population 
coverage was over 80% at the end of 2020 and is forecast to reach around 95% in 2027, so the role of smartphones 
in daily disaster management is also becoming increasingly important. Therefore, research on disaster knowledge 
dissemination, disaster warning systems, and disaster adaptive mapping for smartphones should also be continued.

6  | CONCLUSIONS AND SUGGESTIONS

Given that much attention has been given to GIScience, VGEs, and disaster (Bandrova, Zlatanova, & Konecny, 
2012; Cutter, 2003; Lin et al., 2013; Lü et al., 2019), this article has focused on disaster information representa-
tion from a geospatial perspective. Therefore, we first reviewed disaster information representation and its role 
in knowledge communication, and then identified the strengths and weaknesses of disaster mapping and the 3D 
virtual environment. We also analyzed the weaknesses and strengths of the existing methods for representing 
disaster information in recent decades, and determined gaps and challenges. Subsequently, we proposed some 
basic ideas to solve the above challenges (cf. Figure 3). For example, a knowledge graph is adopted to manage the 
relationship between disaster data and multilevel visualization, optimal selection of disaster data guided by the 
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knowledge graph, and augmented representation of scenes considering public perception. We concluded that 
disaster information representation should be studied in greater depth and emphasized and applied in disaster 
education substantially with social participation and data sharing. However, we are aware that our arguments 
constitute only part of the solutions necessary. Therefore, we hope these arguments will benefit disaster informa-
tion representation development and further enhance public risk awareness.

The authors understand that technologies play a significant role in disrupting the geospatial segments using IoT, 
big data, sensors, AI, and digital twins for automation. Therefore, we recommend integrating various technologies 
incorporating social partnerships, story maps, and data sharing, which may significantly impact short-  to medium- term 
disaster management and the representation of information in GIS mapping and virtual environments. Thus, smart-
phones, tablets, and other mobile devices can contribute to people’s expectations and use of geospatial applications. 
With the upgrade of HD maps and the emergence of a new- generation rendering engine (such as Unreal Engine), 
we recommend that researchers study GIS maps and 3D rendering at high definition. We also recommend utilizing 
every pixel and providing geometry and labels on- screen, constructing a visual disaster scene that is highly similar to 
the real disaster and encouraging more people to experience the great harm caused by the disaster through virtual 
experience. Furthermore, with the increasing application of robots and autonomous driving technology in the field of 
emergency response and disaster management, how to covey information to these non- human devices, better assist 
them in disaster risk identification, analysis and presentation, and feed the results back to decision- makers is also a 
new issue worthy of investigation. Finally, we concluded that increasing accuracy and detail information for disasters 
requires more new devices, open- source platforms, and innovative algorithms for automated data capture, feature 
detection and extraction, simulation and highly effective representation.

ACKNOWLEDG EMENTS
The authors would like to express their gratitude to researchers who have been working on disaster prevention and 
mitigation. This paper was supported by the National Natural Science Foundation of China (Grant Nos. U2034202 and 
41871289) and the Sichuan Science and Technology Program (Grant No.2020JDTD0003 and 2021088).

CONFLIC T OF INTERE S T
No potential conflict of interest was reported by the author(s).

R E FE R E N C E S
Aggarwal, C. C., Wolf, J. L., Wu, K.- L., & Yu, P. S. (1999). Horting hatches an egg: A new graph- theoretic approach to 

collaborative filtering. Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data 
Mining, San Diego, CA (pp. 201– 212). New York, NY: ACM.

Ajao, O., Bhowmik, D., & Zargari, S. (2018). Fake news identification on Twitter with hybrid CNN and RNN models. 
Proceedings of the Ninth International Conference on Social Media and Society, Copenhagen, Denmark (pp. 226– 230). 
New York, NY: ACM.

Allcott, H., Gentzkow, M., & Yu, C. (2019). Trends in the diffusion of misinformation on social media. Research & Politics, 
6(2), 1– 8.

Allen, H. G., Stanton, T. R., Di Pietro, F., & Moseley, G. L. (2013). Social media release increases dissemination of original 
articles in the clinical pain sciences. PLoS ONE, 8(7), e68914.

Andrienko, G., Fabrikant, S. I., Griffin, A. L., Dykes, J., & Schiewe, J. (2014). Geoviz: Interactive maps that help people 
think. International Journal of Geographical Information Science, 28(10), 2009– 2012.

Ao, Y., Zhang, H., Yang, L., Wang, Y., Martek, I., & Wang, G. (2021). Impacts of earthquake knowledge and risk perception 
on earthquake preparedness of rural residents. Natural Hazards, 107(2), 1287– 1310.

Ao, Y., Zhou, X., Ji, F., Wang, Y., Yang, L., Wang, Q., & Martek, I. (2020). Flood disaster preparedness: Experience and 
attitude of rural residents in Sichuan, China. Natural Hazards, 104, 2591– 2618.

Bandrova, T., Zlatanova, S., & Konecny, M. (2012). Three- dimensional maps for disaster management. ISPRS Annals of the 
Photogrammetry, Remote Sensing and Spatial Information Sciences, 1(4), 245– 250.

Batty, M. (1997). Virtual geography. Futures, 29(4– 5), 337– 352.



    |  19LI et aL.

Bednarik, M., Yilmaz, I., & Marschalko, M. (2012). Landslide hazard and risk assessment: A case study from the Hlohovec- 
Sered’ landslide area in south- west Slovakia. Natural Hazards, 64(1), 547– 575.

Bhatt, D., Mall, R., & Banerjee, T. (2015). Climate change, climate extremes and disaster risk reduction. Natural Hazards, 
78(1), 775– 778.

Bodum, L. (2005). Modelling virtual environments for geovisualization: A focus on representation. In J. Dykes, A. M. 
MacEachren, & M.- J. Kraak (Eds.), Exploring geovisualization (pp. 389– 402). Oxford, UK: Elsevier.

Bülthoff, H. H., Campos, J. L., & Meilinger, T. (2008). Virtual reality as a valuable research tool for investigating differ-
ent aspects of spatial cognition. In C. Freksa, N. S. Newcombe, P. Gärdenfors, & S. Wölfl (Eds.), Spatial cognition VI: 
Learning, reasoning, and talking about space (pp. 1– 3). Berlin, Germany: Springer.

Bunch, R. L., & Lloyd, R. E. (2006). The cognitive load of geographic information. The Professional Geographer, 58(2), 209– 220.
Burningham, K., Fielding, J., & Thrush, D. (2008). “It’ll never happen to me”: Understanding public awareness of local flood 

risk. Disasters, 32(2), 216– 238.
Cai, N., & Yao, L. (2012). An analysis of practice and research of disaster information resource management oriented to 

government decision- making. Journal of Sichuan University (Social Science Edition), 6, 116– 123.
Cariolet, J.- M., Vuillet, M., & Diab, Y. (2019). Mapping urban resilience to disasters: A review. Sustainable Cities and Society, 

51, 101746.
Carver, S. (2001). Public participation using web- based GIS. Environment and Planning B: Planning and Design, 28(6), 803– 804.
Chen, M., & Lin, H. (2018). Virtual geographic environments (VGEs): Originating from or beyond virtual reality (VR)? 

International Journal of Digital Earth, 11(4), 329– 333.
Chen, M., Lin, H., Kolditz, O., & Chen, C. (2015). Developing dynamic virtual geographic environments (VGEs) for geo-

graphic research. Environmental Earth Sciences, 74(10), 6975– 6980.
Clemens, P. (2014). OpenGIS geography markup language (GML) encoding standard. Rockville, MD: Open Geospatial Consortium.
Couclelis, H. (2010). Ontologies of geographic information. International Journal of Geographical Information Science, 

24(12), 1785– 1809.
Cutter, S. L. (2003). GIScience, disasters, and emergency management. Transactions in GIS, 7(4), 439– 446.
Dang, P., Zhu, J., Pirasteh, S., Li, W., You, J., Xu, B., & Liang, C. (2021). A chain navigation grid based on cellular automata for 

large- scale crowd evacuation in virtual reality. International Journal of Applied Earth Observation and Geoinformation, 
103, 102507.

Dawson, I. G., & Johnson, J. E. (2014). Growing pains: How risk perception and risk communication research can help to 
manage the challenges of global population growth. Risk Analysis, 34(8), 1378– 1390.

Day, J. (2011). The importance of public perceptions and vulnerability in a multidimensional approach to flood risk management 
(Unpublished, Ph.D. dissertation). Exeter, UK: University of Exeter.

Dehbi, Y., Hadiji, F., Gröger, G., Kersting, K., & Plümer, L. (2017). Statistical relational learning of grammar rules for 3D 
building reconstruction. Transactions in GIS, 21(1), 134– 150.

Dehbi, Y., Klingbeil, L., & Plümer, L. (2020). UAV mission planning for automatic exploration and semantic mapping. 
International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 43(B1), 521– 526.

Denolle, M., Dunham, E., Prieto, G., & Beroza, G. (2014). Strong ground motion prediction using virtual earthquakes. 
Science, 343(6169), 399– 403.

Ding, Y., Fan, Y., Du, Z., Zhu, Q., Wang, W., Liu, S., & Lin, H. (2015). An integrated geospatial information service system 
for disaster management in China. International Journal of Digital Earth, 8(11), 918– 945.

Döllner, J. (2007). Non- photorealistic 3D geovisualization. In W. Cartwright, M. P. Peterson, & G. Gartner (Eds.), Multimedia 
cartography (pp. 229– 240). Berlin: Springer.

Döllner, J., & Kyprianidis, J. E. (2009). Approaches to image abstraction for photorealistic depictions of virtual 3D 
models. In G. Gartner, & F. Ortag (Eds.), Cartography in Central and Eastern Europe (pp. 263– 277). Berlin, Germany: 
Springer.

Dong, W., Wang, S., Chen, Y., & Meng, L. (2018). Using eye tracking to evaluate the usability of flow maps. ISPRS 
International Journal of Geo- Information, 7(7), 281.

Dransch, D., Etter, J., & Walz, U. (2005). Maps for natural risk management. In Proceedings of the 22nd International 
Cartographic Conference (pp. 1– 11). La Coruna, Spain.

Dransch, D., Rotzoll, H., & Poser, K. (2010). The contribution of maps to the challenges of risk communication to the 
public. International Journal of Digital Earth, 3(3), 292– 311.

Eppler, M. J., & Burkhard, R. A. (2004). Knowledge visualization: Towards a new discipline and its fields of application 
(Technical report). Lugano: Università della Svizzera Italiana.

Evans, S. Y., Todd, M., Baines, I., Hunt, T., & Morrison, G. (2014). Communicating flood risk through three- dimensional 
visualisation. Civil Engineering, 167(5), 48– 55.

Forati, A. M., & Ghose, R. (2021). Geospatial analysis of misinformation in Covid- 19 related tweets. Applied Geography, 
133, 102473.



20  |    LI et aL.

Fujii, M., Tamano, E., & Hattori, K. (2021). Role of oral transmission in disaster prevention education- Significance of disas-
ter folklore in modern times. Journal of Disaster Research, 16(2), 241– 243.

Gaillard, J.- C., & Pangilinan, M. L. C. J. D. (2010). Participatory mapping for raising disaster risk awareness among the 
youth. Journal of Contingencies and Crisis Management, 18(3), 175– 179.

Garlandini, S., & Fabrikant, S. I. (2009). Evaluating the effectiveness and efficiency of visual variables for geographic in-
formation visualization. In K. S. Hornsby, C. Claramunt, M. Denis, & G. Ligozat (Eds.), Spatial information theory: COSIT 
2009 (Lecture Notes in Computer Science, Vol. 5756, pp. 195– 211). Berlin: Springer.

Glander, T., & Döllner, J. (2009). Abstract representations for interactive visualization of virtual 3D city models. Computers, 
Environment and Urban Systems, 33(5), 375– 387.

Guo, F., Yang, J., Zhang, J., Zhang, Z., Xu, X., & Zhang, H. (2021). Research on assimilation simulation of chlorophyll a con-
centrations in a virtual geographic environment. Transactions in GIS, 26. https://doi.org/10.1111/tgis.12813

Haworth, B., & Bruce, E. (2015). A review of volunteered geographic information for disaster management. Geography 
Compass, 9(5), 237– 250.

Henstra, D., Minano, A., & Thistlethwaite, J. (2019). Communicating disaster risk? An evaluation of the availability and 
quality of flood maps. Natural Hazards and Earth System Sciences, 19(1), 313– 323.

Holub, M., & Fuchs, S. (2009). Mitigating mountain hazards in Austria: Legislation, risk transfer, and awareness building. 
Natural Hazards and Earth System Sciences, 9(2), 523– 537.

Hopkins, A. (1999). Counteracting the cultural causes of disaster. Journal of Contingencies and Crisis Management, 7(3), 
141– 149.

Hu, Y., Zhu, J., Li, W., Zhang, Y., Zhu, Q., Qi, H., & Zhang, P. (2018). Construction and optimization of three- dimensional 
disaster scenes within mobile virtual reality. ISPRS International Journal of Geo- Information, 7(6), 215.

Jahnke, M., Meng, L., Kyprianidis, J., & Döllner, J. (2008). Non- photorealistic rendering on mobile devices and its usability 
concerns In Proceedings of the 2008 International Conference on Development on Visualization and Virtual Environments 
in Geographic Information Science, Hong Kong (pp. 164– 177).

Jiang, B., Wan, G., Xu, J., Li, F., & Wen, H. (2018). Geographic knowledge graph building extracted from multi- sourced 
heterogeneous data. Acta Geodaetica et Cartographica Sinica, 47(8), 1051– 1061.

Kelman, I. (2015). Climate change and the Sendai framework for disaster risk reduction. International Journal of Disaster 
Risk Science, 6(2), 117– 127.

Kim, J., Vasardani, M., & Winter, S. (2017). Similarity matching for integrating spatial information extracted from place 
descriptions. International Journal of Geographical Information Science, 31(1), 56– 80.

Klimešová, D., & Brožová, H. (2012). GIS as knowledge maps in group decision making. International Journal of Mathematical 
Models and Methods in Applied Sciences, 6, 20– 29.

Kolbe, T. H., Gröger, G., & Plümer, L. (2008). CityGML- 3D city models and their potential for emergency response. In S. 
Zlatanova, & J. Li (Eds.), Geospatial information technology for emergency response (pp. 257– 274). London, UK: Taylor 
& Francis.

Kuveždić Divjak, A., Đapo, A., & Pribičević, B. (2020). Cartographic symbology for crisis mapping: A comparative study. 
ISPRS International Journal of Geo- Information, 9(3), 142.

Lai, J.- S., Chang, W.- Y., Chan, Y.- C., Kang, S.- C., & Tan, Y.- C. (2011). Development of a 3D virtual environment for improv-
ing public participation: Case study- the Yuansantze flood diversion works project. Advanced Engineering Informatics, 
25(2), 208– 223.

Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., & Dyer, C. (2016). Neural architectures for named entity 
recognition. Preprint, arXiv:1603.01360.

Lee, S.- H., Park, J., Park, S. I., & Jang, Y.- H. (2016). An urban flooding simulation technique by using 3D city information 
model. In Proceedings of the Seventh Civil Engineering Conference in the Asian Region, Waikiki, HI (pp. 1– 7). Reston, VA: 
ACECC.

Li, D. (2016). Towards geo- spatial information science in big data era. Acta Geodaetica et Cartographica Sinica, 45(4), 
379– 384.

Li, H., Zhang, C., Xiao, Z., Chen, M., Lu, D., & Liu, S. (2021). A web- based geosimulation approach integrating knowledge 
graph and model- services. Environmental Modelling & Software, 144, 105160.

Li, J., & Rao, H. R. (2010). Twitter as a rapid response news service: An exploration in the context of the 2008 China 
earthquake. Electronic Journal of Information Systems in Developing Countries, 42(1), 1– 22.

Li, W., Zhu, J., Fu, L., Zhu, Q., Xie, Y., & Hu, Y. (2021). An augmented representation method of debris flow scenes to im-
prove public perception. International Journal of Geographical Information Science, 35(8), 1521– 1544.

Li, W., Zhu, J., Zhang, Y., Cao, Y., Hu, Y., Fu, L., & Xu, B. (2019). A fusion visualization method for disaster information based 
on self- explanatory symbols and photorealistic scene cooperation. ISPRS International Journal of Geo- Information, 8(3), 
104.

Li, W., Zhu, J., Zhang, Y., Fu, L., Gong, Y., Hu, Y., & Cao, Y. (2020). An on- demand construction method of disaster scenes 
for multilevel users. Natural Hazards, 101(2), 409– 428.

https://doi.org/10.1111/tgis.12813


    |  21LI et aL.

Lin, H., Batty, M., Jørgensen, S. E., Fu, B., Konečný, M., Voinov, A., & Chen, M. (2015). Virtual environments begin to em-
brace process- based geographic analysis. Transactions in GIS, 19(4), 493– 498.

Lin, H., Chen, M., Lu, G., Zhu, Q., Gong, J., You, X., & Hu, M. (2013). Virtual geographic environments (VGEs): A new gen-
eration of geographic analysis tool. Earth- Science Reviews, 126, 74– 84.

Lin, L., Montanari, N., Prescott, S., Sampath, R., Bao, H., & Dinh, N. (2020). Adequacy evaluation of smoothed par-
ticle hydrodynamics methods for simulating the external flooding scenario. Nuclear Engineering and Design, 365, 
110720.

Liu, R., Wang, J., & Zhang, B. (2020). High definition map for automated driving: Overview and analysis. Journal of 
Navigation, 73(2), 324– 341.

Liu, Y., & Wu, Y.- F. (2018). Early detection of fake news on social media through propagation path classification with re-
current and convolutional networks. In Proceedings of the Thirty- Second AAAI Conference on Artificial Intelligence (pp. 
354– 361). Palo Alto, CA: AAAI Press.

Lord, P. W., Stevens, R. D., Brass, A., & Goble, C. A. (2003). Investigating semantic similarity measures across the gene 
ontology: The relationship between sequence and annotation. Bioinformatics, 19(10), 1275– 1283.

Lü, G., Batty, M., Strobl, J., Lin, H., Zhu, A.- X., & Chen, M. (2019). Reflections and speculations on the progress in geo-
graphic information systems (GIS): A geographic perspective. International Journal of Geographical Information Science, 
33(2), 346– 367.

Luo, L., Zhu, J., Fu, L., Pirasteh, S., Li, W., Han, X., & Guo, Y. (2021). A suitability visualisation method for flood fusion 3D 
scene guided by disaster information. International Journal of Image and Data Fusion, 12(4), 301– 318.

Lurie, N. H., & Mason, C. H. (2007). Visual representation: Implications for decision making. Journal of Marketing, 71(1), 
160– 177.

Macchione, F., Costabile, P., Costanzo, C., & De Santis, R. (2019). Moving to 3- D flood hazard maps for enhancing risk 
communication. Environmental Modelling & Software, 111, 510– 522.

MacEachren, A. M. (2004). How maps work: Representation, visualization, and design. New York, NY: Guilford Press.
Mark, D. M., Freksa, C., Hirtle, S. C., Lloyd, R., & Tversky, B. (1999). Cognitive models of geographical space. International 

Journal of Geographical Information Science, 13(8), 747– 774.
Martin, G. J., & James, P. E. (1993). All possible worlds: A history of geographical ideas. Chichester, UK: John Wiley & Sons.
Meyer, V., Kuhlicke, C., Luther, J., Fuchs, S., Priest, S., Dorner, W., & Scheuer, S. (2012). Recommendations for the user- 

specific enhancement of flood maps. Natural Hazards and Earth System Sciences, 12(5), 1701– 1716.
Mitchell, W. J. T. (1995). Representation. In F. Lentricchia, & T. McLaughlin (Eds.), Critical terms for literary study (2nd ed., 

pp. 11– 22). Chicago, IL: University of Chicago Press.
Munoz, D. H., & Constantinescu, G. (2018). A fully 3- D numerical model to predict flood wave propagation and assess 

efficiency of flood protection measures. Advances in Water Resources, 122, 148– 165.
Nebiker, S., Cavegn, S., & Loesch, B. (2015). Cloud- based geospatial 3D image spaces: A powerful urban model for the 

smart city. ISPRS International Journal of GeoInformation, 4(4), 2267– 2291.
Ntajal, J., Lamptey, B. L., Mahamadou, I. B., & Nyarko, B. K. (2017). Flood disaster risk mapping in the Lower Mono River 

basin in Togo, West Africa. International Journal of Disaster Risk Reduction, 23, 93– 103.
O’Brien, S., & Federici, F. M. (2019). Crisis translation: Considering language needs in multilingual disaster settings. 

Disaster Prevention and Management, 29(2), 129– 143.
Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank citation ranking: Bringing order to the web (Technical 

report). Palo Alto, CA: Stanford InfoLab.
Palttala, P., Boano, C., Lund, R., & Vos, M. (2012). Communication gaps in disaster management: Perceptions by ex-

perts from governmental and non- governmental organizations. Journal of Contingencies and Crisis Management, 
20(1), 2– 12.

Paulheim, H. (2017). Knowledge graph refinement: A survey of approaches and evaluation methods. Semantic Web, 8(3), 
489– 508.

Peng, G., Yue, S., Li, Y., Song, Z., & Wen, Y. (2017). A procedural construction method for interactive map symbols used 
for disasters and emergency response. ISPRS International Journal of Geo- Information, 6(4), 95.

Pirasteh, S., Shamsipour, G., Liu, G., Zhu, Q., & Chengming, Y. (2020). A new algorithm for landslide geometric and defor-
mation analysis supported by digital elevation models. Earth Science Informatics, 13(2), 361– 375.

Pirouz, M., & Zhan, J. (2017). Toward efficient hub- less real time personalized PageRank. IEEE Access, 5, 26364– 26375.
Popelka, S., & Brychtova, A. (2013). Eye- tracking study on different perception of 2D and 3D terrain visualisation. 

Cartographic Journal, 50(3), 240– 246.
Qiu, L., Du, Z., Zhu, Q., & Fan, Y. (2017). An integrated flood management system based on linking environmental models 

and disaster- related data. Environmental Modelling & Software, 91, 111– 126.
Renschler, C. S., & Wang, Z. (2017). Multi- source data fusion and modeling to assess and communicate complex flood 

dynamics to support decision- making for downstream areas of dams: The 2011 Hurricane Irene and Schoharie Creek 
floods, NY. International Journal of Applied Earth Observation and Geoinformation, 62, 157– 173.



22  |    LI et aL.

Ryan, B., Johnston, K. A., Taylor, M., & McAndrew, R. (2020). Community engagement for disaster preparedness: A sys-
tematic literature review. International Journal of Disaster Risk Reduction, 49, 101655.

Rydvanskiy, R., & Hedley, N. (2021). Mixed reality flood visualizations: Reflections on development and usability of cur-
rent systems. ISPRS International Journal of GeoInformation, 10(2), 82.

Scheuer, S., Haase, D., & Meyer, V. (2013). Towards a flood risk assessment ontology: Knowledge integration into a multi- 
criteria risk assessment approach. Computers, Environment and Urban Systems, 37, 82– 94.

Scholz, J., & Jeznik, J. (2020). Evaluating geo- tagged Twitter data to analyze tourist flows in Styria, Austria. ISPRS 
International Journal of Geo- Information, 9(11), 681.

Shin, S., Her, Y., Song, J.- H., & Kang, M.- S. (2019). Integrated sediment transport process modeling by coupling soil and 
water assessment tool and environmental fluid dynamics code. Environmental Modelling & Software, 116, 26– 39.

Sjoraida, D. F., & Anwar, R. K. (2018). The effectiveness of risk communications as a disaster risk reduction strategy in 
Taragong Garut. AIP Conference Proceedings, 1987(1), 020041.

Smith, A., Porter, J. J., & Upham, P. (2017). "We cannot let this happen again": Reversing UK flood policy in response to the 
Somerset levels floods, 2014. Journal of Environmental Planning and Management, 60(2), 351– 369.

Spittal, M. J., McClure, J., Siegert, R. J., & Walkey, F. H. (2005). Optimistic bias in relation to preparedness for earthquakes. 
Australasian Journal of Disaster and Trauma Studies, 1, 1– 10.

Sundheim, B. M. (1995). Overview of results of the MUC- 6 evaluation. In Proceedings of the Sixth Conference on Message 
Understanding, Columbia, MD (pp. 13– 32). New York, NY: ACM.

Symonds, A. M., Vijverberg, T., Post, S., Van Der Spek, B.- J., Henrotte, J., & Sokolewicz, M. (2016). Comparison be-
tween MIKE 21 FM, Delft3D and Delft3D FM flow models of Western Port Bay, Australia. Coastal Engineering, 
1, 35.

Tate, E., Burton, C. G., Berry, M., Emrich, C. T., & Cutter, S. L. (2011). Integrated hazards mapping tool. Transactions in GIS, 
15(5), 689– 706.

Thakur, B., Parajuli, R., Kalra, A., Ahmad, S., & Gupta, R. (2017). Coupling HEC- RAS and HEC- HMS in precipitation run-
off modelling and evaluating flood plain inundation map. In Proceedings of the 2017 World Environmental and Water 
Resources Congress, Sacramento, CA (pp. 240– 251). Reston, VA: ASCE.

Toch, E., Reinhartz- Berger, I., & Dori, D. (2011). Humans, semantic services and similarity: A user study of semantic Web 
services matching and composition. Journal of Web Semantics, 9(1), 16– 28.

Tomaszewski, B. (2020). Geographic information systems (GIS) for disaster management. London, UK: Routledge.
Torpan, S., Hansson, S., Rhinard, M., Kazemekaityte, A., Jukarainen, P., Meyer, S. F., & Orru, K. (2021). Handling false 

information in emergency management: A cross- national comparative study of European practices. International 
Journal of Disaster Risk Reduction, 57, 102151.

Uchida, N., Takahata, K., Shibata, Y., & Shiratori, N. (2011). Never die network extended with cognitive wireless net-
work for disaster information system. In Proceedings of the 2011 International Conference on Complex, Intelligent, and 
Software Intensive Systems, Seoul, South Korea (pp. 24– 31). Piscataway, NJ: IEEE.

Van Dijk, J., & Hacker, K. (2003). The digital divide as a complex and dynamic phenomenon. The Information Society, 19(4), 
315– 326.

Waldman, S., Baston, S., Nemalidinne, R., Chatzirodou, A., Venugopal, V., & Side, J. (2017). Implementation of tidal 
turbines in MIKE 3 and Delft3D models of Pentland Firth & Orkney waters. Ocean & Coastal Management, 147, 
21– 36.

Wang, H., Zhang, F., Wang, J., Zhao, M., Li, W., Xie, X., & Guo, M. (2018). RippleNet: Propagating user preferences on the 
knowledge graph for recommender systems. In Proceedings of the 27th ACM International Conference on Information 
and Knowledge Management, Turin, Italy (pp. 417– 426). New York, NY: ACM.

Wang, W., Chen, G., Han, Z., Zhou, S., Zhang, H., & Jing, P. (2016). 3D numerical simulation of debris- flow motion using 
SPH method incorporating non- Newtonian fluid behavior. Natural Hazards, 81(3), 1981– 1998.

Wang, X., Zhang, M., Fan, W., & Zhao, K. (2021). Understanding the spread of COVID- 19 misinformation on social media: 
The effects of topics and a political leader’s nudge. Journal of the Association for Information Science and Technology. 
https://doi.org/10.1002/asi.24576.

White, I., Kingston, R., & Barker, A. (2010). Participatory geographic information systems and public engagement within 
flood risk management. Journal of Flood Risk Management, 3(4), 337– 346.

Winkler, D., Zischg, J., & Rauch, W. (2018). Virtual reality in urban water management: Communicating urban flooding 
with particle- based CFD simulations. Water Science and Technology, 77(2), 518– 524.

Wu, D., & Cui, Y. (2018). Disaster early warning and damage assessment analysis using social media data and geo- location 
information. Decision Support Systems, 111, 48– 59.

Wu, Y.- H., Liu, K.- F., & Chen, Y.- C. (2013). Comparison between FLO- 2D and Debris- 2D on the application of assessment 
of granular debris flow hazards with case study. Journal of Mountain Science, 10(2), 293– 304.

Yang, Z., Wang, Z., Ke, X., & Peng, Q. (2008). Realistic modeling and rendering of multi- phase flow catastrophic scenes. 
Journal of Computer- Aided Design Computer Graphics, 20(8), 1023– 1032.

https://doi.org/10.1002/asi.2457


    |  23LI et aL.

Yin, L., Zhu, J., Li, Y., Zeng, C., Zhu, Q., Qi, H., & Zhang, P. (2017). A virtual geographic environment for debris flow risk 
analysis in residential areas. ISPRS International Journal of Geo- Information, 6(11), 377.

Yu, D., Tang, L., Ye, F., & Chen, C. (2021). A virtual geographic environment for dynamic simulation and analysis of tailings 
dam failure. International Journal of Digital Earth, 14(9), 1194– 1212.

Yuan, M., & K. S. Hornsby (Eds.) (2007). Computation and visualization for understanding dynamics in geographic domains: A 
research agenda. Boca Raton, FL: CRC Press.

Zhang, G., Gong, J., Li, Y., Sun, J., Xu, B., Zhang, D., & Yin, B. (2020). An efficient flood dynamic visualization approach 
based on 3D printing and augmented reality. International Journal of Digital Earth, 13(11), 1302– 1320.

Zhang, N., Huang, H., Su, B., Zhao, J., & Zhang, B. (2014). Information dissemination analysis of different media towards 
the application for disaster pre- warning. PLoS ONE, 9(5), e98649.

Zhang, Y., Wu, W., Wang, Q., & Su, F. (2017). A geo- event- based geospatial information service: A case study of typhoon 
hazard. Sustainability, 9(4), 534.

Zhang, Y., Zhu, J., Zhu, Q., Xie, Y., Li, W., & Fu, L., Tan, J. (2020). The construction of personalized virtual landslide disaster 
environments based on knowledge graphs and deep neural networks. International Journal of Digital Earth, 13(12), 
1637– 1655.

Zhou, T., Ren, J., Medo, M., & Zhang, Y.- C. (2007). Bipartite network projection and personal recommendation. Physical 
Review E, 76(4), 046115.

Zhu, Q., Chen, L., Hu, H., Pirasteh, S., Li, H., & Xie, X. (2020). Unsupervised feature learning to improve transferability 
of landslide susceptibility representations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote 
Sensing, 13, 3917– 3930.

Zhu, Q., & Fu, X. (2017). The review of visual analysis methods of multi- modal spatiotemporal big data. Acta Geodaetica 
et Cartographica Sinica, 46(10), 1672– 1677.

Zhu, Q., Zhang, J., Ding, Y., Liu, M., Li, Y., Feng, B., & Zhu, J. (2019). Semantics- constrained advantageous information 
selection of multimodal spatiotemporal data for landslide disaster assessment. ISPRS International Journal of Geo- 
Information, 8(2), 68.

Zibrek, K., Martin, S., & McDonnell, R. (2019). Is photorealism important for perception of expressive virtual humans in 
virtual reality? ACM Transactions on Applied Perception, 16(3), 14.

How to cite this article: Li, W. L., Zhu, J., Pirasteh, S., et al. (2022). Investigations of disaster information 
representation from a geospatial perspective: Progress, challenges and recommendations. Transactions in 
GIS, 00, 1– 23. https://doi.org/10.1111/tgis.12922

https://doi.org/10.1111/tgis.12922

